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Brief History of Permanent Magnetse sto y o e a e t ag ets
• c. 1000 BC:  Chinese compasses using lodestone

– Later used to cross the Gobi desert

2Permanent Magnets© M. T. Thompson, 2009

Reference:  K. Overshott, “Magnetism: it is permanent,”  IEE Proceedings-A, vol. 138, no. 1, Jan. 1991, pp. 22-31



Brief History of Permanent Magnets (cont.)
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Reference:  R. Parker, Advances in Permanent Magnetism, John Wiley, 1990, pp. 3



Brief History of Permanent Magnets (cont.)
• c. 200 BC: Lodestone (magnetite) known to the Greeks

– Touching iron needles to magnetite magnetized them
• 1200 AD: French troubadour de Provins describes use of a 

primitive compass to magnetize needles
• 1600: William Gilbert publishes first journal article on 

permanent magnetspermanent magnets
• 1819: Oersted reports that an electric current moves compass 

needle

R fReferences: 
1. K. Overshott, “Magnetism: it is permanent,”  IEE Proceedings-A, vol. 138, no. 1, Jan. 1991, pp. 22-31
2. R. Petrie, “Permanent Magnet Material from Loadstone to Rare Earth Cobalt,” Proc. 1995 Electronics Insulation and 
Electrical Manufacturing and Coil Winding Conf., pp. 63-64
3. Rollin Parker, Advances in Permanent Magnetism, John Wiley, 1990
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4. E. Hoppe, Geshichte des Physik,   Vieweg, Braunshweig, 1926, pp. 339
5. W. Gilbert, “De Magnete 1600,”  translation by S. P. Thompson, 1900, republished by Basic Books, Inc., New York, 1958



Brief History of Permanent Magnets (cont.)
• c 1825: Sturgeon invents• c. 1825: Sturgeon invents 

the electromagnet, 
resulting in a way to 
artificially magnetize 
materials

• 7-ounce magnet was able g
to lift 9 pounds

References:
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References: 
1. W. Sturgeon, Mem. Manchester Lit. Phil. Soc., 1846, vol. 7, pp. 625
2. Britannica Online



Brief History of Permanent Magnets (cont.)
1830 J h H• c. 1830: Joseph Henry 

(U.S.) constructs 
electromagnetsg

Reference: Smithsonian Institute archives

Joseph Henry
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Brief History of Permanent Magnets (cont.)e sto y o e a e t ag ets (co t )
• 1917: Cobalt magnet steels developed by Honda and Takagi 

in Japanp
• 1940: Alnico --- first “modern” material still in use

– Good for high temperatures
• 1960: SmCo (samarium cobalt) rare earth magnets• 1960: SmCo (samarium cobalt) rare earth magnets

– Good thermal stability
• 1983: GE (later Magnequench) and Sumitomo develop 

d i i b (NdF B) th tneodymium iron boron (NdFeB) rare earth magnet
– Highest energy product, but limited temperature range

References: 
1. K. Overshott, “Magnetism: it is permanent,”  IEE Proceedings-A, vol. 138, no. 1, Jan. 1991, pp. 22-31
2 R P t i “P t M t M t i l f L d t t R E th C b lt ” P 1995 El t i I l ti d
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2. R. Petrie, “Permanent Magnet Material from Loadstone to Rare Earth Cobalt,” Proc. 1995 Electronics Insulation and 
Electrical Manufacturing and Coil Winding Conf., pp. 63-64



Brief History of Permanent Magnets (cont.)e sto y o e a e t ag ets (co t )
• Late 1990s --- Hybrid car utilizing high strength permanent 

magnetsg
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Prius and Next-Generation Hybrid

f “ f f
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Reference:  M. Kamiya, “Development of Traction Drive Motors for 
the Toyota Hybrid System”



Maglev System #1
M ti (A t MA)• Magnemotion (Acton, MA)

f C “ S f S ”
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Reference:  R. Thornton, T. Clark and B. Perreault, “Linear Synchronous Motor Propulsion of Small Transit Vehicles,”  
Proceedings of the 2004 ASME/IEEE Joint Rail Conference, April 6-8, 2004, Baltimore MD, pp. 101-107



Maglev System #2
G l At i (S Di CA)• General Atomics (San Diego, CA)

f S f ( ) “ S
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Reference:  U.S. Department of Transportation (Federal Transit Administration), “Low Speed Maglev Technology Development 
Program – Final Report,” FTA-CA-26-7025-02.1, March 2002.



Eddy Current Brake
M t C (S l B h CA)• Magnetar Corp. (Seal Beach, CA)
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Magnetizing Permanent Magnets
M t i l i l d i id ti i fi t• Material is placed inside magnetizing fixture

• Magnetizing coil is energized with a current producing 
sufficient field to magnetize the PM materialg
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Reference:  E. Furlani, Permanent Magnet and Electromechanical Devices, Academic Press, 2001, pp. 57



Pictorial View of Magnetization Processcto a e o ag et at o ocess
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Reference:  R. Parker, Advances in Permanent Magnetism, John Wiley, 1990, pp. 49



Permanent Magnets
E t l ff t f PM b d l d f t• External effects of PMs can be modeled as surface current
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Reference:  P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 7



Permanent Magnets
• After magnetization magnetization vector M has value ofAfter magnetization, magnetization vector M has value of 

either +Msat or –Msat.  Hci is the temperature-dependent field 
strength (A/m) which causes the M vector to flip direction
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Reference:  P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 14-15



Permanent Magnets with High Hci
• Constitutive relationship: B = μ (H+M)Constitutive relationship: B  μo(H+M)
• Since M has values of either +Msat or -Msat, it follows that 

the slope of the BH curve for the permanent magnet is ∼μo; 
thi h ld f NdF B t d t t tthis holds for NdFeB at moderate temperature 
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Reference:  P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 15, 23



Permanent Magnets with Lower Hci
• Note that H i is temperature-dependentNote that Hci is temperature dependent
• At higher temperature, the “knee” in the 2nd quadrant 

shows up.  Operation with H inside the magnet less than 
H lt i i ibl d ti tiHci results in irreversible demagnetization
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Reference:  P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 15, 23



Demagnetization Curves of Ceramic 8
T i l i t d i t• Typical sintered ceramic magnet
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Reference:  P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 62



Demagnetization Curves of NdFeB
• Strong neodymium-iron-boronStrong neodymium iron boron
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Reference:  P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 74



Curie Temperature
• The “Curie temperature” is the temperature at which theThe Curie temperature  is the temperature at which the 

magnetization is totally destroyed.
• The practical maximum operating temperature for a 

t t i ll b l th C i t tpermanent magnet is well below the Curie temperature
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Reference:  P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 74



Maximum Working Temperature
• The practical maximum operating temperature for aThe practical maximum operating temperature for a 

permanent magnet is well below the Curie temperature
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Reference:  Magcraft, “Permanent Magnet Selection and Design Handbook”



Permanent Magnets vs. Steel
N t th t PM h h hi h i f• Note that PM has much higher coercive force

Permanent magnet: Alnico 5 M-5 steel
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B-H Loop for M-5 Grain-Oriented Steel
O l th t h lf f th l h f t l 0 012” thi k• Only the top half of the loops shown for steel 0.012” thick
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Hysteresis Loop
H t i l ti l t h d d• Hysteresis loss proportional to shaded area
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Permanent Magnets
“S ft” ti t i l h ti t l• “Soft” magnetic materials such as magnetic steel can 
behave as very weak permanent magnets

• Permanent magnets, or “hard” magnetic materials, have a g g
high coercive force Hc and can produce significant flux in 
an airgap
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Reference:  E. Furlani, Permanent Magnet and Electromechanical Devices, Academic Press, 2001, pp. 39



Cast AlnicoCast co
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Reference:  R. Parker, Advances in Permanent Magnetism, John Wiley, 1990, pp. 65



Example 1:  Permanent Magnet in a Magnetic Ckt
Thi l NdF B hi h h li B/H i• This example uses NdFeB which has linear B/H curve in 
the 3rd quadrant
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Example 1:  Permanent Magnet in a Magnetic Ckt
U i A ’ l ( d i h i i f i fi iUsing Ampere’s law (and noting that our approximation of infinite μ
assures that H = 0 in the steel) we note: 
 

0=+ gHlH gmm  
 
where Hg is the magnetic field in the airgap.  Next we use Gauss’ 
magnetic law which says that flux is continuous around a loop, to get: 

ggmm ABAB =  gg

where Am is the cross-sectional area of the permanent magnet and Bg is 
the cross-sectional area of the airgap.  Noting that Bg = μoHg, we next 
solve for Bm, as a function of Hm, resulting in the load line equation: 
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Example 1:  Permanent Magnet in a Magnetic Ckt
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Example 2:  Permanent Magnet in a Magnetic Ckt

Example:
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Example 2:  With Alnico Permanent Magnet
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Example 2:  With Alnico Permanent Magnet
R lt B 0 3 T l• Result: Bg = 0.3 Tesla

33Permanent Magnets© M. T. Thompson, 2009

Reference:  P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 89



Example 2:  Load Line Solution with M-5 Steel 
U l d li B 0 38 G ( h l th• Use same load line; Bg = 0.38 Gauss (much lower than 
with Alnico)

• Note: Earth’s magnetic field ~ 0.5 Gaussg
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Some Common Permanent Magnet Materials 
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Typical NdFeB B-H Curve
• Neodymium-iron-boron (NdFeB) is the highest strengthNeodymium iron boron (NdFeB) is the highest strength 

permanent magnet material in common use today
• Good material for applications with temperature less than 

i t l 80 150Capproximately 80 - 150C
• Cost per pound has reduced greatly in the past few years
• Curve below for “grade 40” or 40 MGOe material
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Typical NdFeB B-H Curve --- Elevated Temp.
• Note that the B/H curve degrades at elevated temperatures
• If you operate the magnet below the “knee” irreversible 

demagnetization may resultdemagnetization may result
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NdFeB B-H Curves for Different Grades
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Reference: Dexter Magnetics, Inc. http://www.dextermag.com



Example 3:  Force Between 2” NdFeB Magnet Cubes 
vs Airgapvs. Airgap

Force between 2" cubic magnets
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Example 4:  Stray Fields from 2” Grade 40 Magnet 
CubeCube

• At distances r = 6”, 12” and 24”
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Example 5:  Magnetic Circuit With Steel
• Estimate airgap field B assuming grade 42 NdFeB• Estimate airgap field Bg assuming grade 42 NdFeB
• Airgap g, magnet thickness tm
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Example 5:  Magnetic Circuit With Steel
• This analysis also ignores leakage• This analysis also ignores leakage
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Example 5:  
Magnetic CircuitMagnetic Circuit 

With Steel ---
Operating Point vs. 
Magnet Thickness 

tm
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Example 5:  2D FEA, Magnet Thickness tm = g/2
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Example 5:  2D FEA, Magnet Thickness tm = g
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Example 5:  2D FEA, Magnet Thickness tm = 2g
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Example 5:  Comparison of Different Magnet 
Thicknesses
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Circuit Modeling of 
Permanent MagnetsPermanent Magnets
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Reference: E. P. Furlani, Permanent Magnet and Electromechanical Devices, Academic Press, 2001



Circuit Modeling of Permanent Magnets
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Circuit Modeling of Permanent Magnets
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Circuit Modeling of Permanent Magnets
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Circuit Modeling of Permanent Magnets
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Example 6:  Circuit Modeling of Permanent Magnets

53Permanent Magnets© M. T. Thompson, 2009



Example 6:  Circuit 
M d li f P tModeling of Permanent 

Magnets
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Example 6:  Circuit Modeling of Permanent Magnets-
--FEA
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Method of Images
• These two are equivalent in the upper half-plane
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Another Example:  Magnetic Circuit With Steel
• Which scenario has the lowest leakage flux?
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Reference: www.mmpa.org



Maximum Energy Product
• BH has units of Joules per unit volume• BH has units of Joules per unit volume
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Maximum Energy 
ProductProduct
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Progress in PM Specs
• Maximum (BH) product has gone up a lot in the pastMaximum (BH)max product has gone up a lot in the past 

20 years
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Reference: J. Evetts, Concise Encyclopedia of Magnetic and Superconducting Materials, Pergamon Press, Oxford, 1992



Example 7:  Use of Maximum Energy Product 
• Find magnet dimensions for desired B = 0 8 TeslaFind magnet dimensions for desired Bg  0.8 Tesla 

operating at (BH)max
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Comparison of Different PM Types
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Reference: www.magnetsales.com



Magnetic Conversion Factors
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Reference: www.magnetsales.com



Magnetic Field Estimates
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Reference: www.magnetsales.com



Magnetic Field Estimates
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Reference: www.magnetsales.com



Open Circuited Permanent Magnet
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Reference:  P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 89



Short-Circuited Permanent Magnet
Fi d B i id i i l k d i• Find B inside core, ignoring any leakage and assuming 
infinite permeability in core
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Short Circuited Permanent Magnet
F i fi it bilit l d li i ti l• For infinite permeability, load line is vertical

• Intersection of load lines occurs at B ≈ Br
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Reference:  P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 89



PM and a Winding
M t h t t t l d i di• Many motors have permanent magnets, steel and windings
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PM and a Winding --- Load Line
N t th t d ti ti if t i• Note that demagnetization can occur if current is 
sufficiently high
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PM and a Winding --- Graphical Analysis

• At point (a) steel is initially unmagnetized• At point (a), steel is initially unmagnetized
• As current increases, B and H follow the locus from (a) to (b)
• From (b) to (c), current reduces to zero, and flux density reduces to Br at i = 0
• As current goes negative from (c) to (d), curve traces hysteresis loop.  Note that 

operating point (d) is the same operating point we’d get if there was zero current 
and an airgap.

• If current goes further negative, locus traces from (d) to (e)
• But if current is reduced to zero at point (d) locus traces minor loop from (d) to
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But, if current is reduced to zero at point (d), locus traces minor loop from (d) to 
(f).  The “recoil line” is an approximation to this minor loop



Another Example --- Excitation and Airgap
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Another Example --- Excitation and Airgap --- Load 
LineLine
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Another Example
• Let’s figure out how to magnetize g g
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Another Example
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Another Example
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What Can You 
Buy?
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Reference:  www.dextermag.com



What Can You 
Buy?
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Reference:  www.dextermag.com



What Can You 
Buy?
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Reference:  www.magnetsales.com



Magnetization Patterns
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Reference:  www.magnetsales.com



Comparison
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Reference:  www.magnetsales.com



Comparison of Maximum Operating Temperatures
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Reference:  http://www.electronenergy.com/media/Magnetics%202005.pdf



Comparison of Maximum Operating Temperatures
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Reference:  http://www.electronenergy.com/media/Magnetics%202005.pdf



Quotes

It is well to observe the force and virtue and consequence of 
discoveries and these are to be seen nowhere morediscoveries, and these are to be seen nowhere more 
conspicuously than in printing, gunpowder, and the magnet.
--- Sir Francis Bacon

The mystery of magnetism, explain that to me! No greaterThe mystery of magnetism, explain that to me! No greater 
mystery, except love and hate.
---John Wolfgang von Goethe
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