Outline

Power Quality in Electrical Systems

by

Alexander Kusko, Sc.D., P.E. Marc T. Thompson, Ph.D.

Authors

- Alexander Kusko, Sc.D, Corporate Vice President, Exponent Failure Analysis Associates, Natick, MA. Forty years experience on UPS, power-system design, and power quality. Former associate professor of Electrical Engineering at MIT, Author, co-author, 150 papers, 7 books; IEEE Life Fellow.
- Marc Thompson, Ph.D, President, Thompson Consulting, Inc., Harvard MA and Adjunct Associate Professor of Electrical Engineering, Worcester Polytechnic Institute. Teaches graduate-level power electronics and analog circuit design; twenty years industrial experience in analog and power electronics design; author, co-author, 10 papers; 7 US Patents.

Overview

• Tremendous requirement for reliable, uninterruptible electric power service for all consumers, particularly manufacturing facilities, data-processing centers, and other locations with critical and sensitive loads.

- Power Quality is a measure of the reliability of electric power service.
- Multi-million dollar industry to provide engineering and equipment to resolve Power Quality problems.
- Book is based on a professional course sponsored by IEEE and taught by the authors.
- Book is directed toward real problems and solutions, rather than a total theoretical treatment.
- Book can be used as the text for a course and as a reference.
- Dr. Kusko wrote early book in field in 1989 entitled "Emergency/Standby Power Systems", published by McGraw Hill.
- Book will include treatment of switch-mode power supplies and other loads that produce conducted and radiated interference. Levels are regulated by FCC and other codes.
- Book will include description of standby power systems for emergency and independ operation to solve Power Quality problems.

Market

- Managers, concerned with reliable electric power service
 - Computers/Date Centers
 - Manufacturers
 - Manufacturing facilities
 - Office buildings
 - Electric utility companies
 - Government/Military agencies
 - Healthcare facilities
- Engineers concerned with standards compliance and reliable operation of equipment and systems
 - Electrical design
 - Electric and telecom utilities

- Transportation
- Computer/Telecom
- Unconventional power (e.g. wind)
- Students seeking knowledge and entrance to an active field
 - Fourth year and graduate engineer
 - Two-year associate engineer
 - Professional engineer

Focus

- Identification and correction of power quality problems.
- Listing of definitions and standards
- Case studies from authors' experience and in references of power quality problems and solutions.
- References to significant articles in the professional and trade journals.

Organization of Book

- See Table of Contents
- Based on original six lectures expanded to 12 chapters.
- Figures suitable for PowerPoint presentation; can be emailed to students prior to each class.
- Preface of book will describe how the book can be used, for example, for a six- lecture professional course or for an 18-plus lecture academic course.
- Estimated length of book, 400 pages, including up to 100 figures (already done). See Attachment A for some representative figures.

Competitive Books

- "Power Quality Analysis", Dranetz Bmi, Edison, N.J. 2003
- J. Arillaga, N.R. Watson, S. Chen, "Power Quality Assessment", John Wiley, 2000.
- A. Ghosh, G. Ledwich, "Power Quality Enhancement Using Custom Power Devices", Kluwer, 2002.
- R. C. Dugan, M. F. McGranayhan, and H. W. Beaty, "Electrical Power Systems Quality," McGraw Hill, New York, 1996

TABLE OF CONTENTS

Chapter 1. Introduction

- Definitions of term, "Power Quality"
 - Voltage sag, swell, transients, flicker
 - Harmonics
 - Frequency Deviations
 - Interference
- Examples of poor power quality
 - Interruptions
 - Voltage distortion
 - Capacitor failures
 - Flicker
 - EMI, conducted and radiated
- Need for corrections
 - Customer needs
 - Standards and codes
- Scope
 - Events
 - Corrective measures

Chapter 2. Power Quality

- Factors causing poor power quality
 - Power outages
 - Inherent equipment design
 - Non linear loads, converters, arcing
 - Motor starts, utility switching
 - Standards non-compliance
- Relevant standards
 - IEEE Stds 519 and 1159
 - CBEMA curve
 - Engine-generator standards
 - UPS standards

- Utility, state and federal standards
- EMI standards
 - US: FCC Class A and B
 - International: CISPR 16-1, EN 61000

Chapter 3. Voltage Distortion

- Definitions
 - Amplitude, sags, swells, transients
 - Harmonic distortion
 - Interruptions
- Causes, External to Facility
 - Utility outages
 - Lightning
 - Utility switching
- Causes, Internal to Facility
 - Converters
 - Non-linear loads
 - Motor starts
- Impact on Connected Equipment
 - Compliance with CBEMA Curve
 - Erratic operation and shutdown of equipment
 - Damage

Chapter 4. Harmonics

- Definitions
 - Multiples of line frequency, characteristics.
 - Non-characteristic
- Fourier Analysis
 - Combined waveforms
- Total harmonic distortion, THD
- IEEE Std. 519
- Effects on equipment; case study

Chapter 5. Harmonic Current Sources

- Converters, definitions
 - Single–phase rectifiers
 - Multi-phase rectifiers
 - Controlled rectifiers
- Single-phase rectifiers
 - Inductor filter
 - Capacitor filter
 - Commutation, waveform notching
 - Voltage effect
- Multi-phase rectifiers, applications
 - Motor drives
 - UPS
 - Industry, transit, electrochemical
- Three-phase rectifiers
 - Operation
 - Control
 - Waveforms
 - Line current
 - Harmonics
- Three-phase rectifiers
- Analysis
 - IEEE Std. 519 Method
 - Harmonic sources, assumptions
- System Effects
 - Line and neutral current
 - Harmonic voltage
- IEEE Std. 519
 - Individual Harmonics
 - Total Harmonics, THD

• Case study

Chapter 6. Power Capacitors

- Purpose
 - Utility, facility, location
 - Power factor correction
 - Power harmonic filter
 - Switching
- Ratings
 - Reactive power, kvar
 - Voltage, current
- Resonance
 - Circuit
 - Calculation
 - Prevention

Chapter 7. Corrections for Power Quality Problems

- Converters
 - 12 pulse
- Power Harmonic Filters
 - Passive
 - Active
- Uninterruptible Power Supplies, UPS
 - Static
 - Rotating
- Transformers
 - Harmonic Cancellation
 - Saturable Magnetic, SOLA
- Standby Power Systems

Chapter 8. Switch-Mode Power Supplies

- Applications
- Sources of EMI
- Standards
 - US and European
- Measurements
 - LISN method
- Mitigating strategies
 - EMI filters

Chapter 9. Uninterruptible Power Supplies

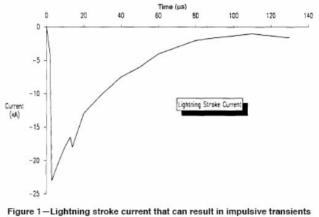
- Purpose
 - Provide uninterruptible power
 - Isolate load from line
 - Features
- Types
 - Static
 - Rotary
- Systems
 - Engine-generator sets
 - Batteries
 - Maintenance, 24/7 concept

Chapter 10. Power Quality Events

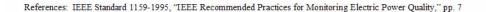
- Effects on equipment
 - Utility equipment
 - Motors
 - Transformers
- 12-Pulse Motor Drives, Examples
 - Elevators
 - Power plant boiler feed pump
- Resonance, Example

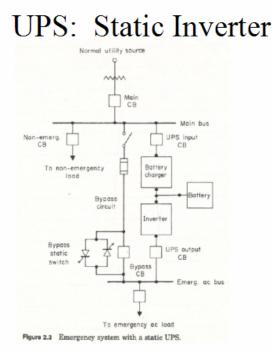
• Extruder plant

Chapter 11. Standby Power Systems

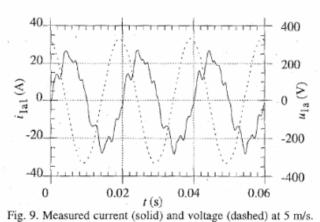

- Purpose
 - Emergency power, long time outages
 - Economic, rate supplement, peak power
 - Back up UPS, batteries
 - Independent supply
- Types of power sources
 - Diesel/gas engine-generator sets
 - Combustion-turbine generator sets
 - Batteries
- Typical systems
 - Single E/G set, emergency power
 - Multiple E/G sets
 - Combined cycle
 - Battery

Chapter 12. Power Quality Measurement


- Purpose
 - Trouble analysis
 - Contractual
- Commercial equipment
 - Power factor
 - Harmonics
- Recorders
 - Sampling
 - Presentation


Attachment A Representative Figures

Typical Lightning-Induced Transient



on the power system

Reference: A. Kusko, Emergency Standby Power Systems, McGraw Hill, 1989

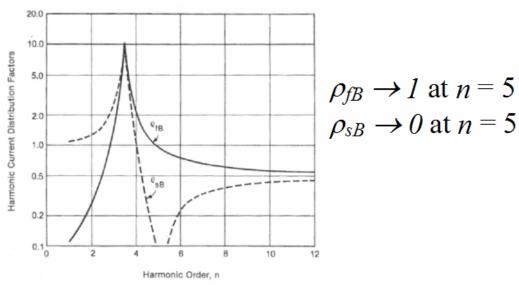

Phase Current and Voltage

Table 1. Relative harmonic content of the voltages.

order n	5.	7	-8	9	11	13	15
frequency (Hz)	250	350	400	450	530	650	750
$U_{I(n)}(\%)$	1.1	0.72	0.11	0.072	0.097	0.056	0.018
$U_{2(n)}(\%)$	1.0	0.54	0.09	0.048	0.047	0.016	0.008

Reference: T. Thiringer, "Power Quality Measurements Performed on a Low-Voltage Grid Equipped with Two Wind Turbines," *IEEE Transactions on Energy Conversion*, vol. 11. No. 3, September 1996, pp. 601-606

Reference: T. J. E. Miller, Reactive Power Control in Electric Systems, John Wiley, pp. 341