E.

for 11050X rce for

DG408/9 :-Channel/Diff 4-Channel Mux

 100Ω

150ns

7.5mW

\$3.75

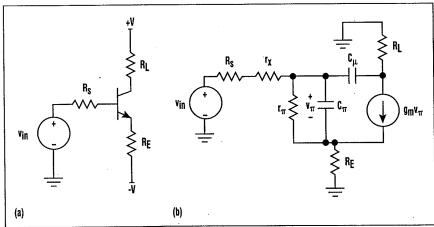
USEFUL APPROXIMATIONS AND TECHNIQUES HELP ENGINEERS USE OPEN CIRCUIT TIME CONSTANTS TO EXPLORE A CIRCUIT'S BANDWIDTH.

NETWORK TRICKS AID IN OCTC CIRCUIT ANALYSIS

he main function of the open circuit time constants (OCTC) analysis method is to estimate the high-frequency -3-dB point of an amplifier. A previous article (ELECTRONIC DESIGN SPECIAL ANALOG ISSUE, June 24, p. 41) introduced the technique, and illustrated that the major benefit of OCTC analysis was the information it provided on the circuit element most affecting the bandwidth. This article discusses the nitty-gritty of how to calculate the time constants for a transistor amplifier, and suggests circuit-analysis techniques and approximations.

First, it's useful to go through the derivation of the open-circuit resistances of the most general transistor amplifier (Fig. 1a). This transistor amplifier has a source resistance ($R_{\rm s}$), an emitter resistance ($R_{\rm g}$), and a collector load resistance ($R_{\rm L}$). Of course, you can calculate open-circuit resistance by writing lots of node equations and grunging through pages and pages of math. But with a little thought and judicious application of intuitive models, the problem becomes almost reasonable. It's important to stop, take a deep breath, and interpret the physical significance of results as you go along.

You can determine the resistances using the circuit's small-signal model.



1. THE MOST GENERAL TRANSISTOR AMPLIFIER has a source resistance, an emitter resistance, and a collector load resistance (a). The circuit's small-signal model substitutes resistors and capacitors for the transistor (b).

MARC THOMPSON

Polaroid Corp., 153 Needham St., Bldg. 1, Newton, MA 02164; (617) 386-4465.

E L E C T R O N I C D E S I G N 67

DECEMBER 16, 1993

ZIS

DESIGN APPLICATIONS LINEAR-CIRCUIT ANALYSIS

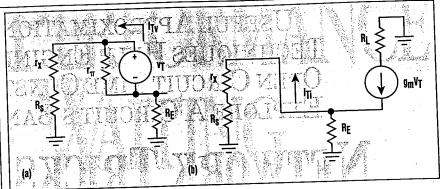
For the most difficult case, calculate R_{1o} (the resistance facing C_{π} with C_{μ} open-circuited), and R_{2o} (the resistance facing C_{μ} with C_{π} open-circuited).

To calculate R₁₀, apply a test-voltage source (V_T) to the C_{π} circuit terminals, and compute the resulting current (I_{τ}) . The resistance R_{10} is the ratio of voltage to current. The first trick to pull out of the engineering toolbox is the principle of superposition. Engineering school teaches you not to use superposition with dependent sources. But you can in this case, because the test-voltage source constrains v_{π} to be a constant V_{T} . Therefore, you can compute two components of the resulting current separately—one due to the voltage source V_{τ} and the other due to the dependent current source $\boldsymbol{g}_{m}\boldsymbol{V}_{T}.$ The total test current is the sum of these two currents. In other words, you're breaking a difficult problem into two easier pieces.

To determine the current I_{Tv} due to V_T only, disable the $g_m V_T$ current source by open-circuiting it (Fig. 2a). This results in:

$$I_{Tv} = \frac{V_{T}}{r_{\pi}} + \frac{V_{T}}{R_{s} + r_{x} + R_{E}}$$
 (1)

To find the current I_{Ti} due to the dependent current source only, shut off the V_T voltage source by shorting it *(Fig. 2b)*. The resulting test current is found by calculating a current divider with the current-source value acting as if V_T were still active. This results in:



2. TO BEGIN CALCULATING the circuit's open circuit time constants, first find the resistance R_{10} facing C_{π} , with C_{μ} open-circuited. R_{10} is computed with the ratio of voltage to current. In this circuit, the current must be calculated in two components—one due to the voltage source V_T (a), and the other due to the dependent current source $g_{\pi}V_T$ (b).

$$I_{Ti} = g_m V_T \frac{R_E}{R_s + r_x + R_E}$$
 (2)

The total test current is the sum of the two components:

$$I_{T} = V_{T} \left[\frac{1}{r_{\pi}} + \frac{1 + g_{m} R_{E}}{R_{s} + r_{x} + R_{E}} \right]$$
(3)

If you think about Equation 3 in reverse, it's clear that this equation form is for resistors in parallel. It follows, then, that the resistance facing C_{π} is:

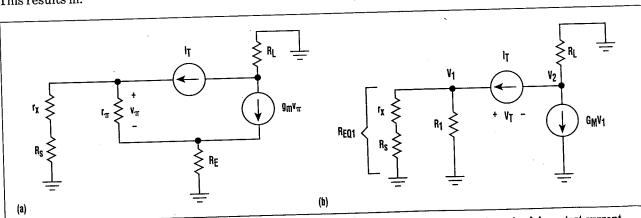
$$R_{1o} = r_{\pi} \frac{R_{s} + r_{x} + R_{E}}{1 + g_{m}R_{E}}$$
 (4)

It makes sense that R_{1o} is equal to r_{π} in parallel with a bunch of other circuit elements, because r_{π} in the transistor circuit is measured direct-

ly across C_{π} . Also, the time constant decreases as R_{E} increases because less and less voltage will appear across C_{π} , decreasing the relative importance of C_{π} .

For R_{20} , the circuit is a bit more difficult, but not impossible. The circuit has a test-current source shown across the C_{μ} terminals (Fig. 3a). Now, if you blindly forge ahead and write node equations, you'll arrive at a horrendously complicated result that gives no insight into the circuit's operation. One time-honored technique in electrical engineering is to transform a difficult problem into a form that's easier to solve. Then, the results of the transformed circuit are applied to the original circuit.

Keeping this philosophy in mind, replace the equivalent resistance at node V₁ by a resistance R₁, which takes into account the input imped-



3. THE RESISTANCE FACING C_{μ} with C_{π} open-circuited is even more difficult to calculate. Applying a test current source across the C_{μ} terminals yields a complicated result (a). It's better to replace the equivalent resistance at node V_1 by a resistance (R_1) that accounts for the transistor's input impedance, and to substitute an equivalent dependent source $(G_M V_1)$ for the $g_m v_{\pi}$ generator.

LINEAR-CIRCUIT ANALYSIS

ance of the transistor (Fig. 3b). Also, replace the $g_m v_\pi$ generator with an equivalent dependent source of value G_MV₁. Remember that the input resistance of an emitter follower is:

$$R_{in} = r_x + r_\pi + (1 + h_{fe})R_E$$
 (5)

Given this result, the resistance R_{ι} at node V_1 is:

$$R_1 = r_{\pi} + (1 + h_{fe})R_E$$
 (6)

To project this result back to the original circuit, you need to solve for v_{π} by solving the current divider:

$$v_{\pi} = I_{T} \frac{r_{\pi}(R_{s} + r_{x})}{R_{s} + r_{x} + r_{\pi} + (1 + h_{fe})R_{E}}$$
 (7)

Similarly, the voltage at V, is equal to the current I_{r} multiplied by the total resistance at node V₁. This resistance is $R_s + r_x$ in parallel with R_1 :

$$V_1 = I_T \frac{(R_s + r_x)(r_\pi + (1 + h_{fe})R_E)}{R_s + r_x + r_\pi + (1 + h_{fe})R_E} \quad (8)$$

The new circuit has replaced the dependent current source $g_m v_{\pi}$ by an equivalent generator G_MV₁... However, the currents of the two dependent current sources must be equal. Given the previously found results, this means that you can solve for the new G_{M} :

$$G_{M} = g_{m} \frac{v_{\pi}}{V_{1}} = g_{m} \frac{r_{\pi}(R_{s} + r_{x})}{(R_{s} + r_{x})(r_{\pi} + (1 + h_{fe})R_{E})}$$
(9)

Because h_{fe} is much greater than 1 (and g_m is much greater than $1/v_{\pi}$), this reduces to:

$$G_{\rm M} \approx \frac{g_{\rm m}}{1 + g_{\rm m} R_{\rm E}} \tag{10}$$

Now that you've figured out G_M and V, for the simpler circuit, you need to solve for that circuit with the usual techniques. $\boldsymbol{R}_{\text{EQ1}}$ is the equivalent resistance seen between the \boldsymbol{V}_1 node and ground:

$$\begin{aligned} R_{EQ1} &= & \\ &(R_s + r_x) \| (r_\pi + (1 + h_{fe}) R_E) \end{aligned} \tag{11}$$

You need to solve for V_1 and V_2 , because the resulting test voltage V_T | For C_μ , no Miller-effect effective resistance exists, and the open cir-

is equal to $V_1 - V_2$. The node voltage V, is easily found:

$$V_1 = I_T R_{EQ1} \tag{12}$$

Node V₂ is not so difficult:

$$V_2 = -(I_T + G_M V_1) R_L$$
 (13)

$$V_2 = -I_T(1 + G_M R_{EQ1}) R_L$$
 (14)

The open circuit facing C_{μ} is found

$$R_{20} = \frac{V_1 - V_2}{I_T} \tag{15}$$

yielding the final result:

$$R_{20} = R_{EQ1} + R_L + G_M R_L R_{EQ1}$$
 (16)

$$G_{\mathbf{M}} \approx \frac{g_{\mathbf{m}}}{1 + g_{\mathbf{m}} R_{\mathbf{E}}} \tag{17}$$

$$R_{EQ1} = (R_s + r_x) | (r_\pi + (1 + h_{fe})R_E)$$
 (18)

In Equation 16, you can see the Miller effect reflected in the $G_{M}R_{L}R_{EQ1}$ term. For a high-gain amplifier (GMR_L large), this term will dominate. The effects of the emitterdegeneration resistor R_E are shown in Equation 17, where the effective

 g_m of the transistor is reduced. The results take on physical significance when you make some important approximations based on the specific circuit topology. For the emitter follower, there's no collector load resistor ($R_L = 0$). Furthermore, the emitter load resistor is usually large compared to r_x and r_{π} . In the limit where the emitter follower is biased with a current source (in other words, R_E becomes infinite, or very large compared to r_x , r_π , and the source resistance R_s), the time constant for C_{π} reduces to:

$$R_{1o} \approx \frac{1}{g_{\rm m}} \tag{19}$$

The R₁₀ time constant is very small because of the bootstrapping effect of the relatively large emitter resis $tor R_E$.

For C_u, no Miller-effect effective

cuit resistance is:

$$R_{2o} = (R_s + r_x) ||(r_\pi + (1 + h_{fe})R_E)|$$
 (20)

Again, if the emitter follower has a large emitter resistor (if h_{fe}R_E is much greater than R_s , r_x , and r_{π}), this may be approximated as:

$$R_{20} \approx R_s + r_x \tag{21}$$

For a high-gain common-emitter amplifier, the Miller effect is reflected in the open-circuit time constant. Given $R_E=0$, the C_π open-circuit resistance reduces to:

$$R_{10} = r_{\pi} || (R_s + r_x)$$
 (22)

If $R_s + r_x$ is small compared to r_π , the dominant term in Equation 22 is the effective source resistance. The C_{μ} time constant is:

$$R_{2o} = \frac{R_L + (1 + g_m R_L) [(R_s + r_x) || r_\pi]}{(23)}$$

Equation 23 again shows the familiar Miller effect term.

These equations should be used as a guideline when making approximations. Every circuit is different, so be prepared to make your own calculations. To summarize, useful techniques when faced with a complicated circuit are:

- Solve it by thinking, not by working too hard.
- Break a difficult problem into several easier ones, and then solve the various parts.
- Convert the circuit to an already solved form.
- Make reasonable approximations.

Marc Thompson is a senior engineer at Polaroid's Medical Imaging Systems. He has a BS and MS in electrical engineering from the Massachusetts Institute of Technology, Cambridge, and is currently pursuing his PhD.

How VALUABLE?	CIRCLE
HIGHLY	530
MODERATELY	531
SLIGHTLY	532