Power Electronics Notes 30G Cabling and Wire Charts

Marc T. Thompson, Ph.D. Thompson Consulting, Inc. 9 Jacob Gates Road Harvard, MA 01451 Phone: (978) 456-7722 Fax: (240) 414-2655 Email: marctt@thompsonrd.com Web: http://www.thompsonrd.com

© Marc Thompson, 2009

Overview

- Wire size is denoted by AWG (American Wire Gage)
- Wire diameter varies by a factor of 2 every 6 AWG
- #36 AWG is defined to be 0.005" (5 mil) diameter
- "Circular mils" is the diameter in mils, squared. (1 mil = 0.001")

To find wire diameter d based on AWG number:

In inches:
$$d = (0.005'') \times 92^{\frac{36 - AWG}{39}}$$

In millimeters: $d = (25.4) \times (0.005'') \times 92^{\frac{36-AWG}{39}}$

Example 1: AWG Conversion

• AWG #0

$$d = (0.005") \times 92^{\frac{36 - AWG}{39}}$$

In inches:
$$= (0.005") \times 92^{\frac{36 - 0}{39}} = 0.3249"$$

Example 2: AWG Conversion for #4/0

- For 00, 000, 0000 etc. gauges, use -1, -2, -3 etc. for AWG
- Example: AWG 0000 (i.e. #4/0)

$$d = (0.005'') \times 92^{\frac{36 - AWG}{39}}$$

In inches:

$$= (0.005'') \times 92^{\frac{36-(-3)}{39}} = 0.46''$$

Resistance of a Piece of Copper Wire

$$R = \frac{\rho l}{A}$$

$$\rho = \text{copper resistivity} = 1.7 \times 10^{-8} \Omega$$
-m at 25 °C
I = wire length [m]
A = wire cross-sectional area [m²]

Copper Temperature Coefficient of Resistivity

- Copper resistivity goes up as temperature goes up
- So, the total resistance of a piece of wire goes up as it heats up

• Temperature coefficient of resistivity is about +0.004/°C, or about 0.4% per degree C

Aluminum Wire

- Aluminum has higher resistivity than copper (about 70% higher), with resistivity $\rho = 2.9 \times 10^{-8} \Omega$ -m
- A 15-amp branch circuit made with #14 copper would require #12 aluminum, by the NEC
- Similar TC to copper
- Aluminum is much lighter than copper (about 33% of the weight per unit volume)
- Often used in power transmission (good ratio of resistivity to weight)

 Corrosion when joining aluminum to copper lugs; differing thermal expansion

Copper Wire Chart, Part 1

AWG SIZE	DIAMETER (MM)	Ω/KM (75°C)	KG/KM	TURNS/CM ²
0	8.25	0.392	475	
1	7.35	0.494	377	
2	6.54	0.624	299	
3	5.83	0.786	237	
4	5.19	0.991	188	
5	4.62	1.25	149	
6	4.12	1.58	118	
7	3.67	1.99	93.8	
8	3.26	2.51	74 .4	
9	2.91	3.16	59.0	
10	2.59	3.99	46.8	14
10	2.31	5.03	37.1	17
12	2.05	6.34	29.4	22

Table 20.1 Copper Wire Data

Reference: Kassakian, Schlecht, Verghese, *Principles of Power Electronics*, Addison-Wesley, 1991

Copper Wire Chart, Part 2

11	4.11	6.24	29.4	22	
12	2.05	6.34			
13	1.83	7.99	23.3	27	
14	1.63	10.1	18.5	34	
15	1.45	12.7	14.7	40	
16	. 1.29	16.0	11.6	51	
17	1.15	20.2	9.23	63	
18	1.02	25.5	7.32	79	
19	0.912	32.1	5.80	98	
20	0.812	40.5	4.60	123	
20	0.723	51.1	3.65 .	153	
22	0.644	64.4 (IL	B)2.89	192	
23	0.573	81.2 3	50 FEST 2.30	237	
23	0.511	102	1.82	293	
.25	0.455	129	1.44	364	
	0.405	163	1.15	454	
26	•	205	1.10	575	
27	0.361		1.39	710	
28	0.321	259			
29	0.286	327	1.75	871	
30	0.255	412	2.21	1090	

.

Sizing of Power Cables

- Large power cables are available in copper and aluminum
- Wire is sized by AWG (American Wire Gage) or thousands of circular mils (kcmils)
- He smallest wire used in power distribution is #14 AWG, typically a solid conductor with an outside diameter of 0.0641", or 64.1 mils
- The largest AWG is #4/0, (0000) with a diameter of approximately 0.522" for a 7-strand conductor
- The area of larger conductors is expressed in circular mils. To find the area in cmils, square the diameter in mils by itself. For example, a #10 solid conductor with a diameter of 162 mils has an area of (162 mils)² = 26244 cmils, or 26.2 kcmil

Large Power Cables

Gauge	Washburn & Moen	British Imperial Standard (S.W.G.)	Birmingham or Stubs	American (A.W.G.) or Brown & Sharpe
7/0	.4900"	.500"		
6/0	.4615"	.464"		.5800"
5/0	.4305"	.432"	.500"	.5165"
4/0	.3938"	.400"	.454"	.4600"
3/0	.3625"	.372"	.425"	.4096"
2/0	.3310"	.348"	.380"	.3648"
1/0	.3065"	.324"	.340"	.3249"
1	.2830"	.300"	.300"	.2893"
2	.2625"	.276"	.284"	.2576"
3	.2437"	.252"	.259"	.2294"
4	.2253"	.232"	.238"	.2043"
5	.2070"	.212"	.220"	.1819"
6	.1920"	.192"	.203"	.1620"
7	.1770"	.176"	.180"	.1442"
8	.1620"	.160"	.165"	.1284"
9	.1483"	.144"	.148"	.1144"

Reference: http://www.unc.edu/~rowlett/units/scales/wiregauge.html

© M. T. Thompson, 2009

Power Cables and Cable Impedance

- Power cables have a finite resistance (due to the resistivity of the conductor) and a finite inductance (due to the geometry of the cable)
- Cable impedance results in voltage drops, power loss, and heating in the cable

AC Cable Resistance

• DC resistance of a piece of wire:

$$R = \frac{l}{\sigma A}$$

- A = cross sectional area of wire, I = length, and σ = electrical conductivity
- However, AC resistance is higher than DC resistance, due to skin effect and proximity effect
- Wire resistance can be found in a "wire chart" for an isolated wire (i.e. in air, no metallic conduit, no other current-carrying wires nearby)

Copper Wire Data

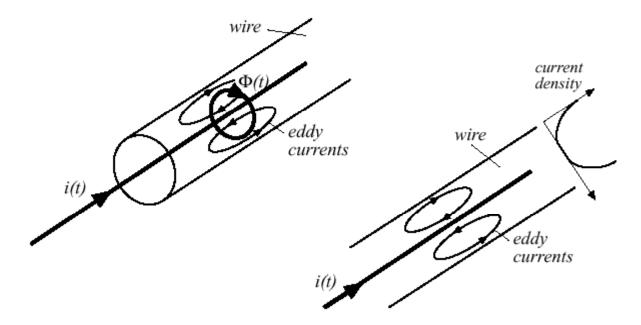
Kassakian, Schlecht a regres-Principles of Power Electronics 582 Chapter 20 Magnetic Components

Addison-Wesley 1991

Table 20.1 Copper Wire Data

AWG SIZE	DIAMETER (MM)	Ω/KM (75°C)	KG/KM	TURNS/CM ²
0	8.25	0.392	475	
1	7.35	0.494	377	
2	6.54	0.624	299	
3.	5.83	0.786	237	
4	5.19	0.991	188	
5	4.62	1.25	149	
6	4.12	1.58	118	
7	3.67	1.99	93.8	
8	3.26	2.51	74.4	
9	2.91	3.16	59.0	
10	2.59	3.99	46.8	14
11	2.31	5.03	37.1	17
12	2.05	6.34	29.4	22
13	1.83	7.99	23.3	27
14	1.63	10.1	18.5	34
15	1.45	12.7	14.7	40
16	. 1.29	16.0	11.6	51
17	1.15	20.2	9.23	63
18	1.02	25.5	7.32	79
19	0.912	32.1	5.80	98
20	0.812	40.5	4.60	123
21	0.723	51.1	3.65	153
22	0.644	64.4 /12	2.89	192
23	0.573	81.2 3	50 FEST 2.30	237
24	0.511	102	1.82	293
25	0.455	129	1.44	364
26	0.405	163	1.15	454
27	0.361	205	1.10	575
28	0.321	259	1.39	710
29	0.286	327	1.75	871
30	0.255	412	2.21	1090

٩.


Copper Wire Data

NG nber	Diameter (mm)	Cross-Sectional Area (mm ²)	Resistance, mΩ/m at 25°C	Current Capacity, 500 A/cm ²	Current Capacity 100 A/cm ²
	5.189	21.15	0.8314	105.8	21.15
4	4.115	13.30	1.322	66.51	13.30
Ð	3.264	8.366	2.102	41.83	8.366
్ సి	2.588	5.261	3.343	26.31	5.261
10	2.053	3.309	5.315	16.54	3.309
Ľ.	1.628	2.081	8.451	10.40	2.081
2	1.291	1.309	13.44	6.543	1.309
0	1.024	0.8230	21.36	4.115	0.8230
5. 1	0.8118	0.5176	33.96	2.588	0.5176
	0.6438	0.3255	54.00	1.628	0.3255
f	0.5106	0.2047	85.89	1.024	0.2047
<u>6</u>	0.4049	0.1288	136.5	0.6438	0.1288
8	0.3211	0.08098	217.1	0.4049	0.08098
Ő.	0.2546	0.05093	345.1	0,2546	0.05093
2	0.2019	0.03203	549.3	0.1601	0.03203
4	0.1601	0.02014	873.3	0.1007	0.02014
6	0.127000	0.0126677	1389.	0.06334	0.0126677
8	0.1007	0.007967	2208.	0.03983	0.007967
0	0.07987	0.005010	3510.	0.02505	0.005010

Reference: P. Krein, *Elements of Power Electronics*, 3d edition

Causes of Skin Effect

- Self-field of wire causes current to crowd on the surface of the wire, raising the AC resistance
- Method:
 - Current $i(t) \Rightarrow$ changing magnetic flux density $B(t) \Rightarrow$ reaction currents

Reference: http://ece-www.colorado.edu/~pwrelect/book/slides/Ch12slide.pdf

© M. T. Thompson, 2009

Wire Charts

Consequences of Skin Effect

- For high frequencies, current is concentrated in a layer approximately one skin depth δ thick
- Skin depth varies with frequency

$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}} = \sqrt{\frac{1}{\pi f\mu\sigma}}$$

- σ = electrical conductivity = 5.9×10⁷ Ω⁻¹ m⁻¹ for copper at 300K
- μ = magnetic permeability of material = $4\pi \times 10^{-7}$ H/m in free space

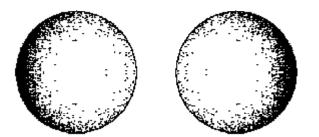
Skin dept	h in copper at	300K
cond	5.90E+07	
mu	1.26E-06	
f	skin depth (m	eter)
1	6.55E-02	
10	2.07E-02	
100	6.55E-03	
1000	2.07E-03	
1.00E+04	6.55E-04	
1.00E+05	2.07E-04	
1.00E+06	6.55E-05	

Skin Effect ---- Increase in Wire Resistance

- For high frequencies, resistance of wire increases
- DC resistance of wire: $R_{DC} = \frac{l}{\sigma(\pi r_w^2)}$
- For frequencies above critical frequency where skin depth equals wire radius r_w: ^{R(f)}

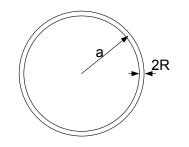
$$R_{AC} = \frac{l}{\sigma(2\pi r_w \delta)} = R_{DC} \left(\frac{2\delta}{r_w}\right) R_{DC}$$

$$f_{crit} = \frac{1}{\pi r_w^2 \mu \sigma} f_{crit}$$


- Result: for high frequency operation, don't bother making wire radius > δ
 - Skin depth in copper at 60 Hz is approximately 8 mm

Proximity Effect

- In multiple-layer windings in inductors and transformers, the proximity effect can also greatly increase the winding resistance
- Field from one wire affects the current profile in another


CURRENTS IN OPPOSITE DIRECTION

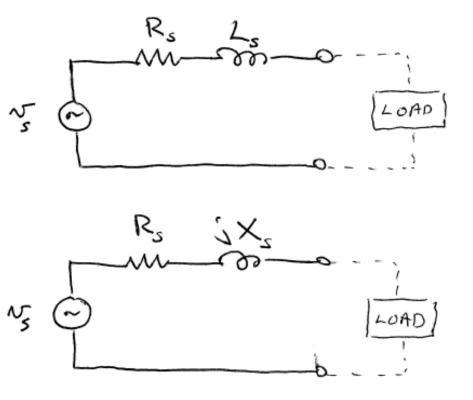
CURRENTS IN SAME DIRECTION

Cable Inductance

- Inductance is defined by the geometry of the wire loop
- Included in the calculation is wire radius, and loop length and shape
 - Circular loop of wire

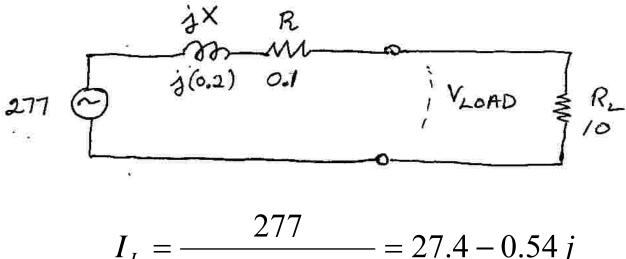
$$L = \mu_o a \left[\ln \left(\frac{8a}{R} \right) - 1.75 \right]$$

- Parallel-wire line



© M. T. Thompson, 2009

Wire Charts


AC Service with Real-World Impedance

- All electrical services have finite impedance; shown here the impedance is R_s + jωL_s
- These types of power distribution drawings rarely show inductance explicitly; rather the inductive reactance jX_s is used.
- L_s is the sum of wiring inductance, transformer leakage, etc.

Example 3: Line Voltage Drop

- Find load voltage and load current
- Note that line resistance is 0.1Ω and line reactance is 0.2Ω

$$I_{L} = \frac{277}{0.2j + 0.1 + 10} = 27.4 - 0.54$$
$$V_{LOAD} = I_{L}R_{L} = 274 - 5.4j$$

• Note voltage drop across line impedance of a few Volts

National Electrical Code Impedance Estimates

NEC Table 9 Note conduit type affects resistance and reactance

TABLE 16-1

Table 9 Alternating-Current Resistance and Reactance for 600-Volt Cables, 3-Phase, 60 Hz, 75°C (167°F)-

		_					ums to Neutral	per Kilom	eter Teet				*		Τ
Size	XL (Reacts All W		Resis	ernating-Curr tance for Uno Copper Wires	oated	Alt Renis	ernating-Contance for Alun Wires	rent nhyum	Effer	tive Z at 0.85	PF for		tive Z at 0.85		
(AWG or kemil)	PYC, Aluminum Conduits	Steel Conduit	PVC Condult	Aluminum Conduit	Steel Conduit	PVC Cendujt	Atuminum Conduit	Steel Canduia	PVC Conduit	Aluntinum Condult	Steel	PVC Conduit	Aluminum	Steel	Size (AWG or kemil
14	0.190 0.058	0.240 0.073	10.2 3.1	10.2 3.1	10.2 3.1	-	=	-	8.9 2.7	8.9 2.7	8.9 2.7	_		-	14
12	0.177 0.054	0.223 0.058	6.6 2.0	6.6 2.0	6.6 2.0	10.5 3.2	10.5 3.2	10.5 3.2	5.6 1.7	5.6 1.7	S.6	9.2 2.8	9.2 2.8	9.2	12
10	0.164 0.050	0.207 0.063	3.9 1.2	3.9 1.2	3.9 1.2	6.6 2.0	6.6 2.0	6.6 2.0	3.6 1.1	3.6 1.1	3.6	5.9 1.8	5.9 1.8	5.9 1.8	10
8	0.171 0.052	0.213 0.065	2.56 0.78	2.55 0.78	2.56 0.78	43 13	4.3 1.3	4.3 1.3	2.26 0.69	2.26	2.30	3.5	3.6 1.1	3.6	8
6	0.167 0.051	0.210 0.064	1.61 0,49	1.61 0.49	1.61 0.49	2.66 0.81	2.66 0.81	2.66 0.81	1.44 0.44	1.48	1.48	2.33	2.36	2.36	6
4	0.157 0.048	0.197 . 0.060	1.02 0,31	1.02 0.31	1.02 0.31	1.67 0.51	1.67 0.51	1.67 0.51	0.95 0.29	0.95 0.29	0.98	1.51 0.46	1.51	1.51	4
3	0:154 0.047	0.194 0.059	0.82 0.25	0.82 0.25	0.82 0.25	1.31 0.40	1.35 0,41	1.31 0.40	0.75 0.23	2210001 334		e druid w		Senting	1000

Derived Wire Chart

• Uses NEC Table 9 and estimates weight and cost per length

WIRE (CHART MTT 11/20/0	8				
Data ta	ken from NEC 2005 Tabl	le 9, using alternating current	t (60 Hz) resistance	and reactance for 600V, 3-p	bhase	
60 Hz,	75C, 3 single conductors	s in conduit				
Est. co	pper wire cost per kg:	\$10.00				
AWG	<u>XL</u>	L (microH/meter)	<u>R (ohms-neutral</u>	<u>Wire diam.</u>	Weight	Est. cost
r kemil	Ohm-neutral per km		perkm)	<u>(mm)</u>	<u>(kg/km)</u>	(perkm)
14	0.190	0.50	10.2	1.63	18.416	\$184
12	0.177	0.47	6.6	2.05	29.283	\$293
10	0.164	0.44	3.9			\$466
8	0.171	0.45	2.56	3.26	74.035	\$740
6	0.167	0.44	1.61	4.12	117.721	\$1,177
4	0.157	0.42	1.02	5.19	187.183	\$1,872
3	0.154	0.41	0.82	5.83	236.034	\$2,360
2	0.148	0.39	0.62	6.54	297.633	\$2,976
1	0.151	0.40	0.49	7.35	375.308	\$3,753
1/0	0.144	0.38	0.39	8.25	473.255	\$4,733
2/0	0.141	0.37	0.33	9.27	596.763	\$5,968
3/0	0.138	0.37	0.253	10.40	752.505	\$7,525
4/0	0.135	0.36	0.203	11.68	948.891	\$9,489
250	0.135	0.36	0.171	12.70	1121.090	\$11,211
300	0.135	0.36	0.144	13.91	1345.308	\$13,453
350	0.131	0.35	0.125	15.03	1569.526	\$15,695
400	0.131	0.35	0.108	16.06	1793.744	\$17,937
500	0.128	0.34	0.089	17.96	2242.181	\$22,422
600	0.128	0.34	0.075	19.67	2690.617	\$26,906
750	0.125	0.33	0.062	22.00	3363.271	\$33,633
1000	0.121	0.32	0.049	25.40	4484.361	\$44,844

© M. T. Thompson, 2009

Types of Power Cable

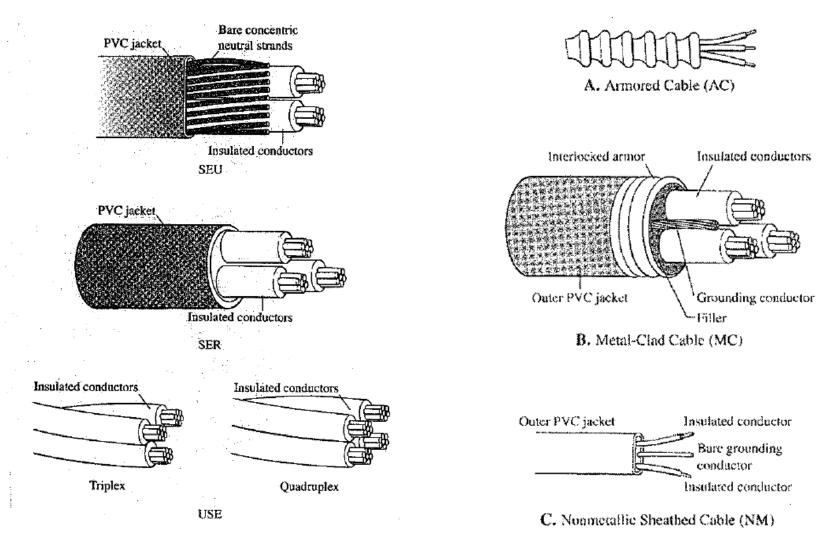
TABLE 6-1

Cable Insulation Types

THW-2	Thermoplastic insulation (usually PVC), Heat resistant (90°C rating), suitable for \underline{W} et locations.
THWN-2	Same as THW except Nylon jacket over reduced insulation thickness. Also rated THHN.
THUN	Thermoplastic insulation (usually PVC). High Heat resistant (90°C rating), dry locations only, Nylon jacket. Also rated THWN.
ХННW-2	Cross-linked polyethylene insulation $(\underline{\mathbf{X}})$, <u>High</u> <u>H</u> eat resistant (90°C rating), for wet and dry locations.
RHH	Rubber insulation. Most manufacturers use cross-linked polyethylene because it has the same properties as rubber. High Heat resistant (90°C rating), for dry locations only.
RHW-2	Rubber insulation (cross-linked polyethylene). Heat resistant (90°C rating), suitable , for Wet locations.
USE-2	Underground Service Entrance. Most utilize XLP for 90°C in direct burial applica- tions. Product is usually triple rated: RHH-RHW-USE.
NM-B	NonMetallic shearhed cable. The "B" denotes that individual conductor insulation is rated 90°C; however, ampacity is limited to that of a 60°C conductor. Thermoplastic (PVC) conductor insulation, nylon jacketed, with overall PVC cable jacket.
SEU	Service Entrance Cable, Unarmored, Usually type XHHW insulated conductors with overall PVC jacket. As such, the cable is rated for 90°C dry, 75°C wet locations,
SER	Service Entrance Cable, Round, Same material construction as SEU but round con- struction.

Source: Southwire Power CableManual and Product Catalog. © Southwire Company.

Wire Sizes



Reference: Richter and Schwan, Practical Electrical Wiring (16th edition), McGraw-Hill, 1993

© M. T. Thompson, 2009

Types of Power Cable

Type NM

- Residential, non wet
- NEC Article 334

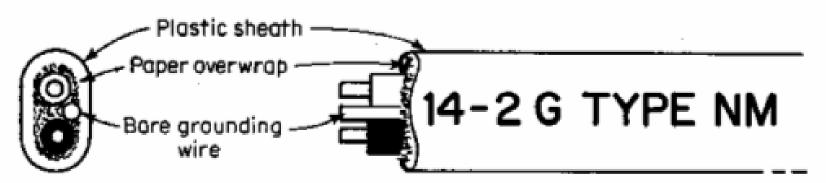


Fig. 6-5 Nonmetallic-sheathed cable is popular for ordinary wiring. This is NEC Type NM and may be used only in dry locations.

Reference: Richter and Schwan, Practical Electrical Wiring (16th edition), McGraw-Hill, 1993

© M. T. Thompson, 2009

Type NMC

- Residential, dry or damp
- NEC Article 334

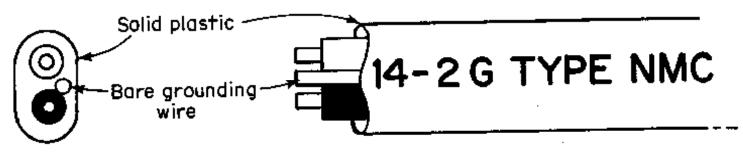


Fig. 6-6 Type NMC nonmetallic-sheathed cable may be used in dry or damp locations.

Reference: Richter and Schwan, Practical Electrical Wiring (16th edition), McGraw-Hill, 1993

Type "BX" Armored

- Light industrial
- NEC calls it AC
- Armored cable covered in NEC Article 320

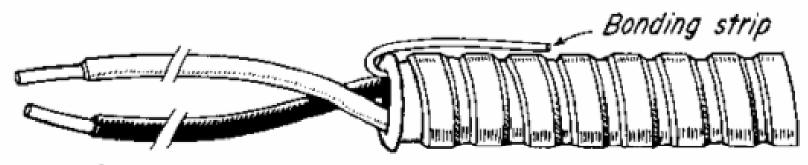


Fig. 6-7 Armored cable has metal armor for its final protection.

Reference: Richter and Schwan, Practical Electrical Wiring (16th edition), McGraw-Hill, 1993

© M. T. Thompson, 2009

National Elec. Code Ampacity Estimates

• Table 310.16, ampacity table

ARTICLE 310: Conductors for General Wiring NEC Table 310.16

Table 310.18 Allowable Ampacties of insulated Conductors Rated 0 Through 2000 Volts, 60°C Through 90°C (140°F Through 194°F), Not More Than Three Current-Carrying Conductors in Raceway, Cable, or Earth (Directly Burled), Based on Ambient Temperature of 30°C (86°F)

RHW-2, THON, TYpes RHW, THOW, THW-2, Types RHW,		_
Image: Types TW, Types TW, THWN, XHW, THWN, XHW, XHW, XHW, XHW, XHW, XHW, XHW, XHW	90°C (194°F)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Types TBS, SA, SIS, THHN, THHW, THW-2, THWN-2, RHH, RHW-2, USE-2, XHH, XHHW-2, USE-2, XHH, XHHW-2, ZW-2]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LAD ALUMINUM	orkomi
14' 20 20 25 $ 12'$ 25 25 30 20 20 $10'$ 30 35 40 25 30 6 55 65 75 40 50 4 70 85 95 55 65 3 85 100 110 65 75 2 95 115 130 75 90 1 110 130 150 85 100 100 125 150 170 100 120 2.0 145 175 195 115 135 300 165 200 225 130 155 4.0 195 230 260 150 180 250 215 225 230 190 230 300 240 285 330 190 230 3	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	-
8 40 50 55 30 40 6 55 65 75 40 50 4 70 85 95 55 65 3 85 100 110 65 75 2 95 115 130 75 90 1 110 130 150 85 100 10 125 150 170 100 120 20 145 175 195 115 135 30 165 200 225 130 155 4.0 195 230 260 150 180 250 215 255 290 170 205 300 240 285 320 190 230 350 260 310 350 210 250 400 280 335 380 225 270 500 320	25	12*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	10*
4 70 85 95 55 65 3 85 100 110 65 75 2 95 115 130 75 90 1 110 130 150 85 100 1.0 125 150 170 100 120 2.0 145 175 195 115 135 3.0 165 200 225 130 155 4.0 195 230 260 150 180 250 215 255 290 170 205 300 240 285 320 190 230 350 260 310 350 210 250 400 280 335 380 225 270 500 320 380 430 286 340 600 355 420 475 535 320 385	45	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	6
2 95 115 130 75 90 1 110 130 150 85 100 10 125 150 170 100 120 20 145 175 195 115 135 30 165 200 225 130 155 4.0 195 230 260 150 180 250 215 255 290 170 205 300 240 285 320 190 230 350 260 310 350 210 250 400 280 335 380 225 270 500 320 380 430 260 310 600 355 420 475 285 340 700 385 460 520 310 375 750 400 475 535 320 385 900<	75	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	85	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	2
2/0 145 175 195 115 135 3/0 165 200 225 130 155 4/0 195 230 260 150 180 250 215 255 290 170 205 300 240 285 320 190 230 350 260 310 350 210 250 400 280 335 380 225 270 500 320 380 430 260 310 600 355 420 475 285 340 700 385 460 520 310 375 750 400 475 535 320 395 900 436 520 585 330 395 900 436 520 585 355 425 1000 455 545 615 375 445	115	1
3/0 165 200 225 130 155 4/0 195 230 260 150 180 250 215 255 290 170 205 300 240 285 320 190 230 350 260 310 350 210 250 400 280 335 380 225 270 500 320 380 430 260 310 600 355 420 475 285 340 700 385 460 520 310 375 750 400 475 535 320 385 800 410 480 5555 330 395 900 435 520 585 355 425 1000 455 545 615 375 445 1250 495 590 665 405 485	135	1/0
4/0 195 230 260 150 180 250 215 255 290 170 205 300 240 285 320 190 230 350 260 310 350 210 250 400 280 335 380 225 270 500 320 380 430 260 310 600 355 420 475 285 340 700 385 460 520 310 375 750 400 475 535 320 385 900 410 490 555 330 395 900 435 520 585 355 425 1000 455 545 615 375 445 1250 495 590 665 405 485 1500 525 705 435 520 1750	150	2/0
250 215 255 290 170 205 300 240 285 320 190 230 350 260 310 350 210 250 400 280 335 380 215 270 500 320 380 430 260 310 600 355 420 475 285 340 700 385 460 520 310 375 750 400 475 535 320 385 800 410 490 555 330 395 900 435 520 585 355 425 1000 455 545 615 375 445 1250 495 590 665 405 485 1500 520 625 705 435 520 1750 545 650 735 455 545	175	3/0
300 240 285 320 190 230 350 260 310 350 210 250 400 280 335 380 225 270 500 320 380 430 260 310 600 355 420 475 285 340 700 385 460 520 310 375 750 400 475 535 320 395 900 436 520 535 320 395 900 435 520 585 355 425 1000 455 545 615 375 445 1250 495 590 665 405 485 1500 525 705 435 520 1750 545 650 735 455 545	205	4/0
350 260 310 350 210 250 400 280 335 380 225 270 500 320 380 430 260 310 600 355 420 475 285 340 700 385 460 520 310 375 750 400 475 535 320 385 800 410 490 555 330 395 900 435 520 585 355 425 1000 455 545 615 375 445 1250 495 590 665 405 485 1500 525 705 435 520 1750 545 650 735 455 545	230	250
400 280 335 380 225 270 500 320 380 430 260 310 600 355 420 475 285 340 700 385 460 520 310 375 750 400 475 535 320 385 900 410 490 555 330 395 900 435 520 585 335 425 1000 455 545 615 375 445 1250 495 590 665 405 485 1500 520 705 435 520 1750 545 650 735 455 545	255	300
500 320 380 430 260 310 600 355 420 475 285 340 700 385 460 520 310 375 750 400 475 535 320 385 800 410 490 555 330 395 900 435 520 585 355 425 1000 455 545 615 375 445 1250 495 590 665 405 485 1500 525 705 435 520 1750 545 650 735 455 545	280	350
600 355 420 475 285 340 700 385 460 520 310 375 750 400 475 535 320 385 800 410 490 555 330 395 900 435 520 585 355 425 1000 455 545 615 375 445 1250 495 590 665 405 485 1500 525 735 435 520 1750 545 650 735 455 545	305	400
700 385 460 520 310 375 750 400 475 535 320 385 800 410 490 555 330 395 900 435 520 585 355 425 1000 455 545 615 375 445 1250 495 590 665 405 485 1500 525 705 435 520 1750 545 650 735 455 545	350	500
750 400 475 535 320 385 800 410 490 555 330 395 900 435 520 585 355 425 1000 455 545 615 375 445 1250 495 590 665 405 485 1500 520 625 705 435 520 1750 545 650 735 455 545	385	600
800 410 490 555 330 395 900 435 520 585 355 425 1000 455 545 615 375 445 1250 495 590 665 405 485 1500 520 625 705 435 520 1750 545 650 735 455 545	420	700
900 435 520 585 355 425 1000 455 545 615 375 445 1250 495 590 665 405 485 1500 520 625 705 435 520 1750 545 650 735 455 545	435	750
1000 455 545 615 375 445 1250 495 590 665 405 485 1500 520 625 705 435 520 1750 545 650 735 455 545	450	800
1250 495 590 665 405 485 1500 520 625 705 435 520 1750 545 650 735 455 545	480	900
1500 520 625 705 435 520 1750 545 650 735 455 545	500	1000
1750 545 650 735 455 545	545	1250
	585	1500
2000 560 665 750 470 560	615	1750
	630	2000
CORRECTION FACTORS		
Ambient Temp. For ambient temperatures other than 30°C (86°F), multiply the allowable am		Ambler

Amblent Temp. (*C)	For amb		es other than 30°C (86 bove by the appropria			ampacities shown	Amblent Temp. (*F)
21-25	1.08	1.05	1.04	1.08	1.05	1.04	70-77
26-30	1.00	1.00	1.00	1.00	1.00	1.00	78-86
31-35	0.91	0.94	0.96	0.91	0.94	0.96	87-95
36-40	0.82	0.88	0.91	0.82	0.88	0.91	96-104
41-45	0.71	0.82	0.87	0.71	0.82	0.87	105-113
46-50	0.58	0.75	0.82	0.58	0.75	0.82	114-122
51-55	0.41	0.67	0.76	0.41	0.67	0.76	123-131
56-60	-	0.58	0.71	-	0.58	0.71	132-140
61-70	-	0.33	0.58	-	0.33	0.58	141-158
71-80	_	-	0.41	-	-	0.41	159-176

* Small Condutors. Unless specifically permitted in 240.4(E) through (G), the overcurrent protection shall not esceed 15 smperes for 12 AWG, and 30 emperes for 10 AWG experies for 12 AWG and 30 emperes for 10 AWG experies for 12 AWG and 25 smperes for 10 AWG shuminum and copper-clad shuminum after any correction factors for ambient temperature and number of conductors have been applied.

© M. T. Thompson, 2009

National Elec. Code Ampacity Estimates

• Correction factor for ambient temperature, Table 310.16

CORRECTION FACTORS										
Ambient Temp. (°C)	F	or ambient temper sho	atures other than 30 wn above by the app	°C (86°F), multip ropriate factor sl	oly the allowable a nown below	mpacities				
21-25	1.08	1.05	1.04	1.08	1.05	1.04				
2630	1.00	1.00	1.00	1.00	1.00	1.00				
31-35	0.91	0.94	0.96	0.91	0.94	0.96				
36-40	0.82	0.88	0.91	0.82	0.88	0.91				
41-45	0.71	0.82	0.87	0.71	0.82	0.87				
46-50	0.58	0.75	0.82	0.58	0.75	0.82				
51-55	0.41	0.67	0.76	0.41	0.67	0.76				
5660		0.58	0.71		0.58	0.71				
6170	_	0.33	0.58		0.33	0.58				
71-80	_		0.41			0.41				

*See 240.4(D).

۰.