Power Electronics Notes 30C Notes on Permanent Magnets

Marc T. Thompson, Ph.D. Thompson Consulting, Inc. 9 Jacob Gates Road Harvard, MA 01451 Phone: (978) 456-7722 Fax: (240) 414-2655 Email: marctt@thompsonrd.com Web: http://www.thompsonrd.com

Portions of these notes excerpted from the CD ROM accompanying Fitzgerald, Kingsley and Umans, <u>Electric Machinery</u>, 6th edition, McGraw Hill, 2003 Other notes © Marc Thompson, 2009

© M. T. Thompson, 2009

Brief History of Permanent Magnets

- c. 1000 BC: Chinese compasses using lodestone
 - Later used to cross the Gobi desert

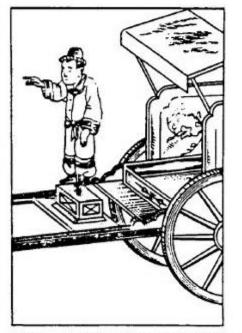


Fig. 2 Man-shaped compass mounted on a chariot, after Kartsev [2]

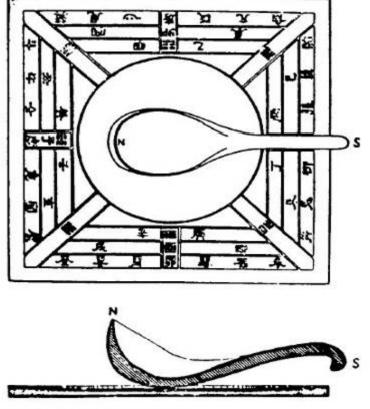


Fig. 3 Chinese spoon compass

Reference: K. Overshott, "Magnetism: it is permanent," IEE Proceedings-A, vol. 138, no. 1, Jan. 1991, pp. 22-31

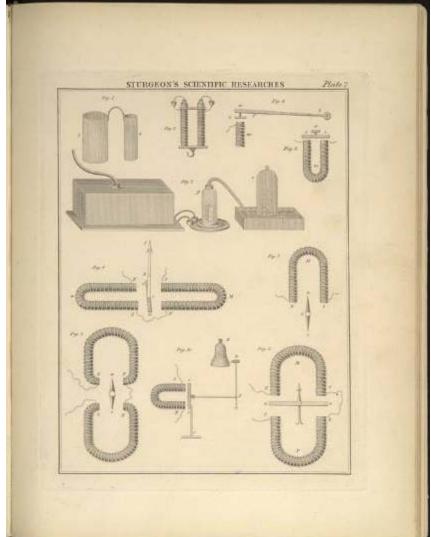


Figure 1.1 Magnetic needles for compasses are being made by craftsmen in this print of 1637. Good steel was manufactured in China from 500 A.D. onwards.

Reference: R. Parker, Advances in Permanent Magnetism, John Wiley, 1990, pp. 3

© M. T. Thompson, 2009

- c. 200 BC: Lodestone (magnetite) known to the Greeks
 Touching iron needles to magnetite magnetized them
- 1200 AD: French troubadour de Provins describes use of a primitive compass to magnetize needles
- 1600: William Gilbert publishes first journal article on permanent magnets
- 1819: Oersted reports that an electric current moves compass needle


References:

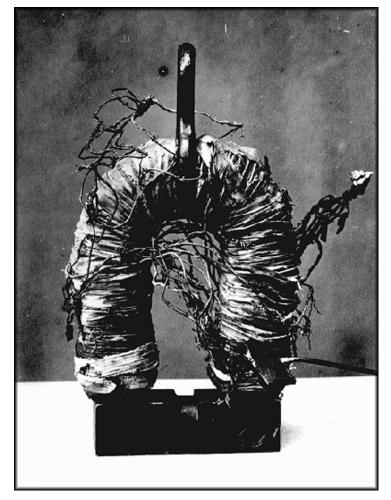
1. K. Overshott, "Magnetism: it is permanent," IEE Proceedings-A, vol. 138, no. 1, Jan. 1991, pp. 22-31

2. R. Petrie, "Permanent Magnet Material from Loadstone to Rare Earth Cobalt," *Proc. 1995 Electronics Insulation and Electrical Manufacturing and Coil Winding Conf.*, pp. 63-64

- 3. Rollin Parker, Advances in Permanent Magnetism, John Wiley, 1990
- 4. E. Hoppe, "Geshichte des Physik," Vieweg, Braunshweig, 1926, pp. 339
- 5. W. Gilbert, "De Magnete 1600," translation by S. P. Thompson, 1900, republished by Basic Books, Inc., New York, 1958

- c. 1825: Sturgeon invents the electromagnet, resulting in a way to artificially magnetize materials
- 7-ounce magnet was able to lift 9 pounds

References:


- 1. W. Sturgeon, *Mem. Manchester Lit. Phil. Soc.*, 1846, vol. 7, pp. 625
- 2. Britannica Online

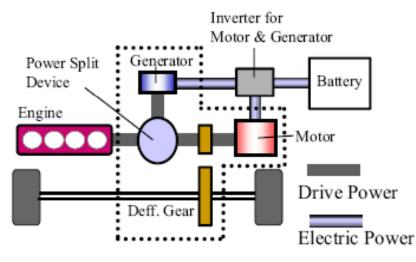
© M. T. Thompson, 2009

 c. 1830: Joseph Henry (U.S.) constructs electromagnets

Joseph Henry

Reference: Smithsonian Institute archives

- 1917: Cobalt magnet steels developed by Honda and Takagi in Japan
- 1940: Alnico --- first "modern" material still in use
 Good for high temperatures
- 1960: SmCo (samarium cobalt) rare earth magnets
 Good thermal stability
- 1983: GE (later Magnequench) and Sumitomo develop neodymium iron boron (NdFeB) rare earth magnet
 - Highest energy product, but limited temperature range


References:

1. K. Overshott, "Magnetism: it is permanent," IEE Proceedings-A, vol. 138, no. 1, Jan. 1991, pp. 22-31

2. R. Petrie, "Permanent Magnet Material from Loadstone to Rare Earth Cobalt," *Proc. 1995 Electronics Insulation and Electrical Manufacturing and Coil Winding Conf.*, pp. 63-64

Late 1990s --- Hybrid car utilizing high strength permanent magnets

Prius and Next-Generation Hybrid

THS Transmission

Fig.2. Toyota Hybrid System.

Table 1. THS motor specifications.

System	THS		THS II	
Vehicle	Prius			SUV
E/G	1.5L			3.3L
Launch	1997	2000	2003	2005
DC Bus Voltage	About 274V		500V	650V
Max. Power	30 kW	33 kW	50 kW	123 kW
Max. Torque	305 Nm	350 Nm	400 Nm	333 Nm
Max. Speed	6000 rpm		6700 rpm	12400 rpm

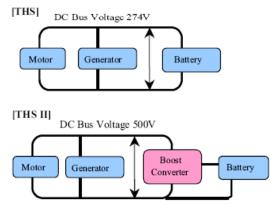


Fig.3. High voltage motors drive system employing a boost DC/DC converter.

Reference: M. Kamiya, "Development of Traction Drive Motors for the Toyota Hybrid System"

© M. T. Thompson, 2009

Maglev System #1

Magnemotion (Acton, MA)

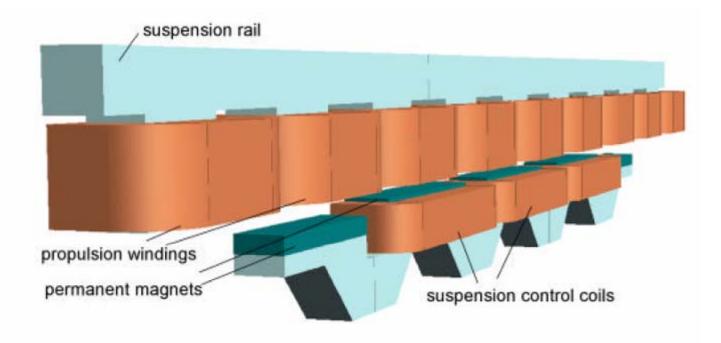


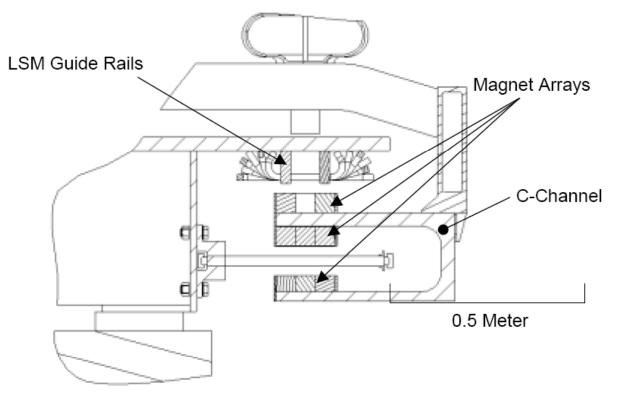
Fig. 2.1. A vehicle's magnet pod attracted upwards to a suspension rail.

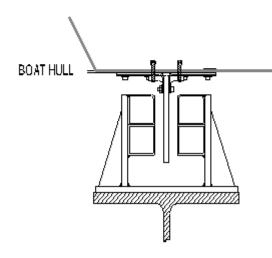
Reference: R. Thornton, T. Clark and B. Perreault, "Linear Synchronous Motor Propulsion of Small Transit Vehicles," *Proceedings of the 2004 ASME/IEEE Joint Rail Conference*, April 6-8, 2004, Baltimore MD, pp. 101-107

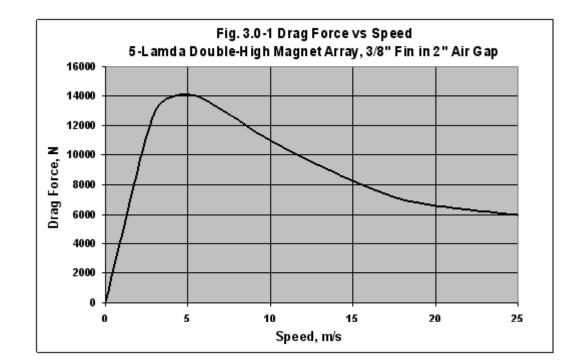
© M. T. Thompson, 2009

Maglev System #2

• General Atomics (San Diego, CA)

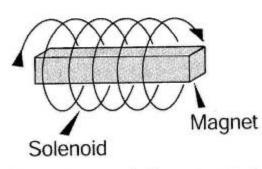


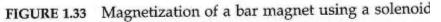

Figure 2-9 Cross-section of Magnet System Assembly


Reference: U.S. Department of Transportation (Federal Transit Administration), "Low Speed Maglev Technology Development Program – Final Report," FTA-CA-26-7025-02.1, March 2002.

Eddy Current Brake

• Magnetar Corp. (Seal Beach, CA)





Magnetizing Permanent Magnets

- Material is placed inside magnetizing fixture
- Magnetizing coil is energized with a current producing sufficient field to magnetize the PM material

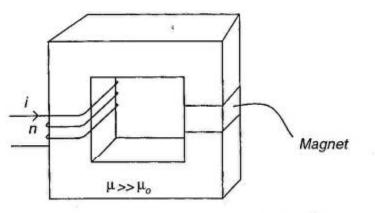
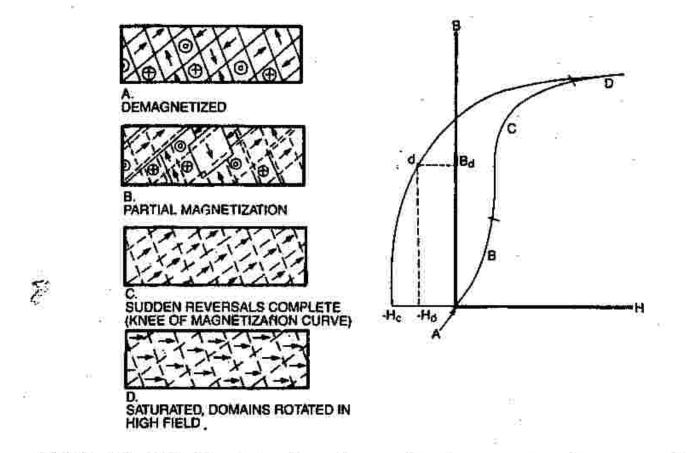



FIGURE 1.34 Conventional magnetizing fixture.

Reference: E. Furlani, *Permanent Magnet and Electromechanical Devices*, Academic Press, 2001, pp. 57

© M. T. Thompson, 2009

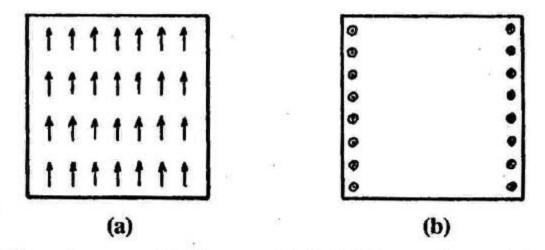
Pictorial View of Magnetization Process

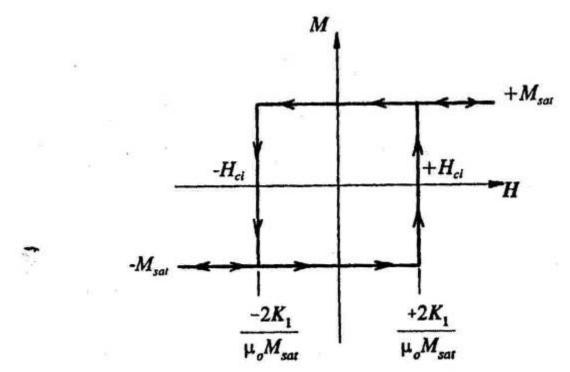
© M. T. Thompson, 2009

 \sim

Permanent Magnets

• External effects of PMs can be modeled as surface current



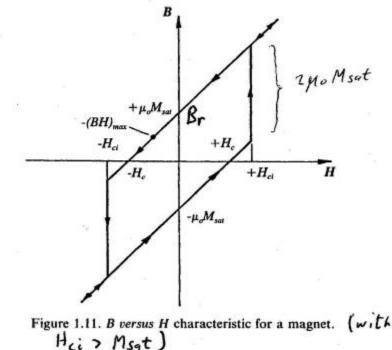

Figure 1.4. Uniformly magnetized magnet (a), which may be modeled by a current density over its boundary (b).

Reference: P. Campbell, *Permanent Magnet Materials and their Applications*, Cambridge University Press, 1994, pp. 7

© M. T. Thompson, 2009

Permanent Magnets

 After magnetization, magnetization vector M has value of either +M_{sat} or -M_{sat}. H_{ci} is the temperature-dependent field strength (A/m) which causes the M vector to flip direction


Figure 1.10. Intrinsic magnetization characteristic for an elemental volume of a magnet.

Reference: P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 14-15

© M. T. Thompson, 2009

Permanent Magnets with High H_{ci}

- Constitutive relationship: $\mathbf{B} = \mu_o(\mathbf{H} + \mathbf{M})$
- Since M has values of either +M_{sat} or -M_{sat}, it follows that the slope of the BH curve for the permanent magnet is ~μ_o; this holds for NdFeB at moderate temperature

Reference: P. Campbell, *Permanent Magnet Materials and their Applications*, Cambridge University Press, 1994, pp. 15, 23

© M. T. Thompson, 2009

Permanent Magnets with Lower H_{ci}

- Note that H_{ci} is temperature-dependent
- At higher temperature, the "knee" in the 2nd quadrant shows up. Operation with H inside the magnet less than H_{ci} results in irreversible demagnetization

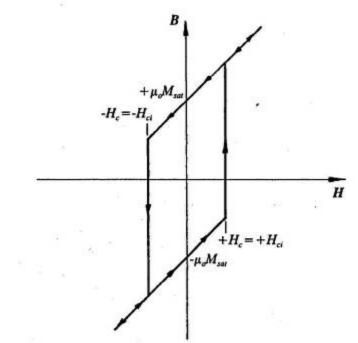


Figure 1.17. **B** versus **H** characteristic for a magnet with $|H_{ci}| < M_{sat}$.

Reference: P. Campbell, *Permanent Magnet Materials and their Applications*, Cambridge University Press, 1994, pp. 15, 23

© M. T. Thompson, 2009

Demagnetization Curves of Ceramic 8

• Typical sintered ceramic magnet

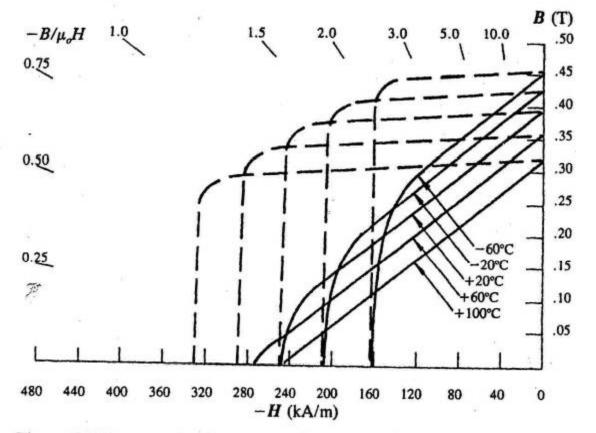


Figure 3.3. Demagnetization curves of Ceramic 8 at various temperatures.

Reference: P. Campbell, *Permanent Magnet Materials and their Applications*, Cambridge University Press, 1994, pp. 62

© M. T. Thompson, 2009

Demagnetization Curves of NdFeB

Strong neodymium-iron-boron

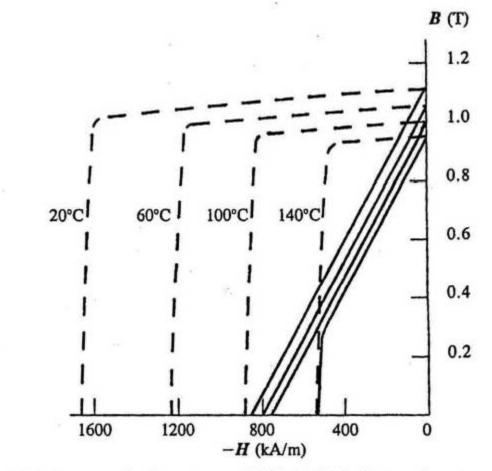


Figure 3.14. Demagnetization curves of (Nd, Dy)-Fe-B at various temperatures.

Reference: P. Campbell, *Permanent Magnet Materials and their Applications*, Cambridge University Press, 1994, pp. 74

© M. T. Thompson, 2009

Curie Temperature

- The "Curie temperature" is the temperature at which the magnetization is totally destroyed.
- The practical maximum operating temperature for a permanent magnet is well below the Curie temperature

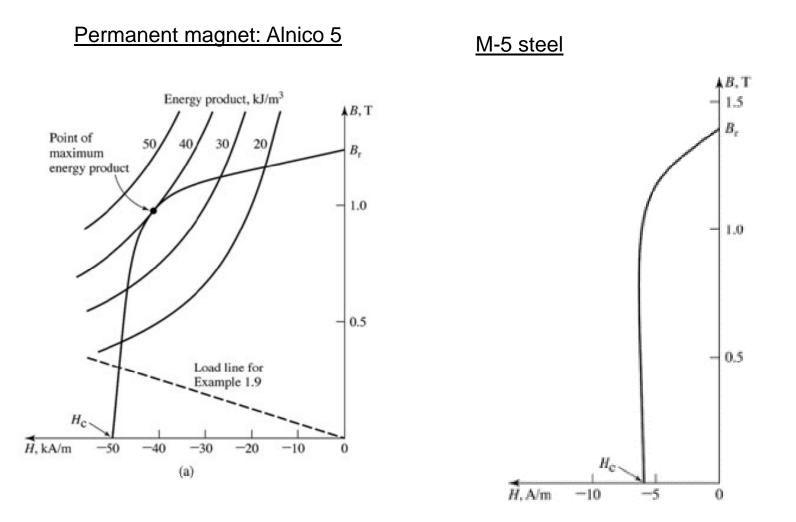
Reference: P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 74

Maximum Working Temperature

• The practical maximum operating temperature for a permanent magnet is well below the Curie temperature

Magnetic materials have a wide range of working temperatures. The following chart list the various materials and their maximum working temperature. NdFeB material comes in many different heat tolerances but as the heat tolerance increases the maximum available flux density decreases:

	Maximum Working Temperature		
Material	°C	°F	
Ceramic	400	752	
Alnico	540	1004	
SmCo 1,5	260	500	
SmCo 2, 17	350	662	
NdFeB N	80	176	
NdFeB M	100	212	
NdFeB H	120	248	
NdFeB SH	150	302	
NdFeB UH	180	356	
NdFeB EH	200	392	


Table 3 - Working Temperatures

Reference: Magcraft, "Permanent Magnet Selection and Design Handbook"

© M. T. Thompson, 2009

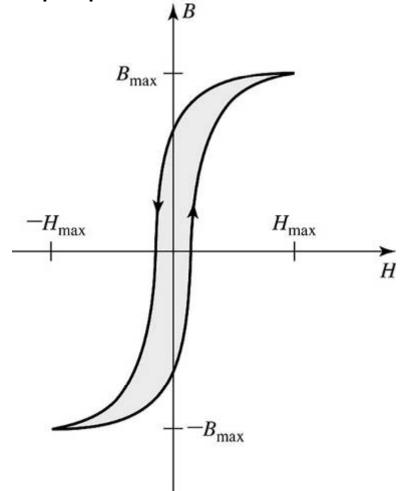
Permanent Magnets vs. Steel

• Note that PM has much higher coercive force

© M. T. Thompson, 2009

B-H Loop for M-5 Grain-Oriented Steel

• Only the top half of the loops shown for steel 0.012" thick



© M. T. Thompson, 2009

Permanent Magnets

Hysteresis Loop

• Hysteresis loss proportional to shaded area

Permanent Magnets

- "Soft" magnetic materials such as magnetic steel can behave as very weak permanent magnets
- Permanent magnets, or "hard" magnetic materials, have a high coercive force H_c and can produce significant flux in an airgap

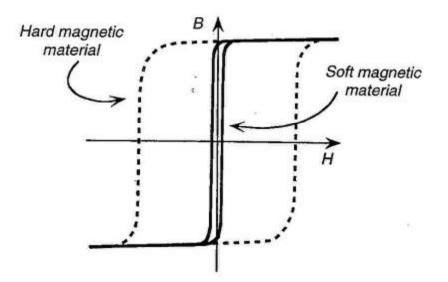
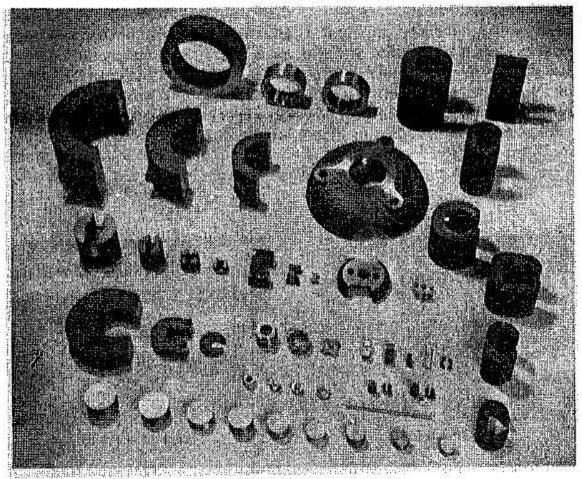


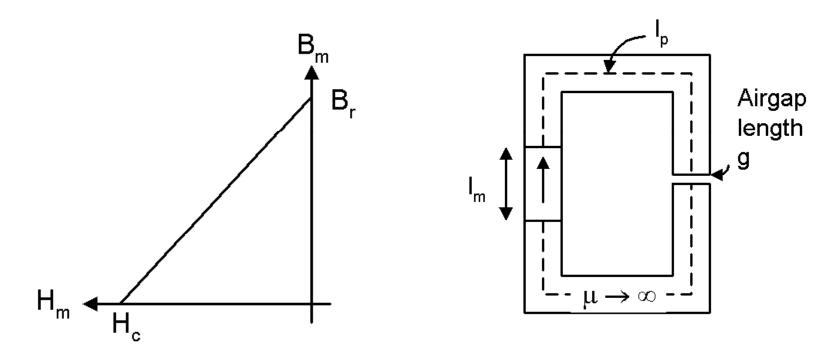
FIGURE 1.25 The B-H loops for soft and hard magnetic materials.

Reference: E. Furlani, *Permanent Magnet and Electromechanical Devices*, Academic Press, 2001, pp. 39

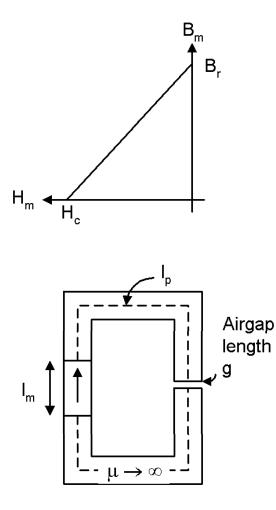
© M. T. Thompson, 2009

Cast Alnico




Figure 4.3 Typical cast Alnico magnet configurations.

Reference: R. Parker, Advances in Permanent Magnetism, John Wiley, 1990, pp. 65


© M. T. Thompson, 2009

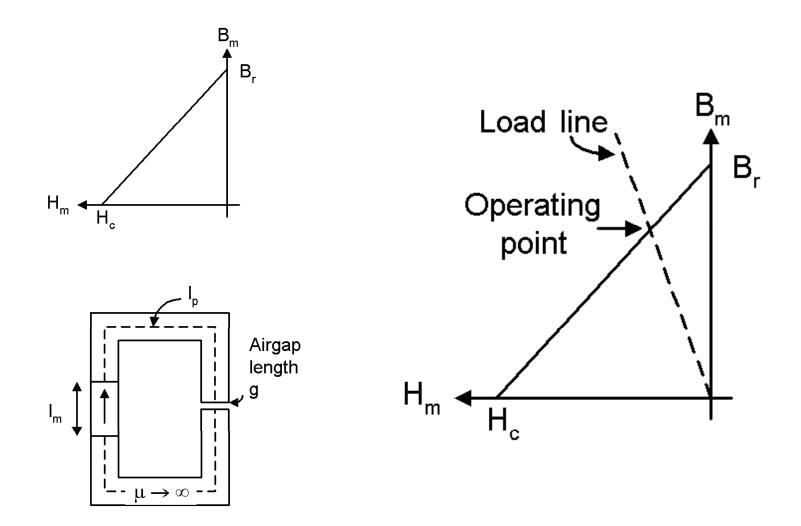
Example 1: Permanent Magnet in a Magnetic Ckt

 This example uses NdFeB which has linear B/H curve in the 3rd quadrant

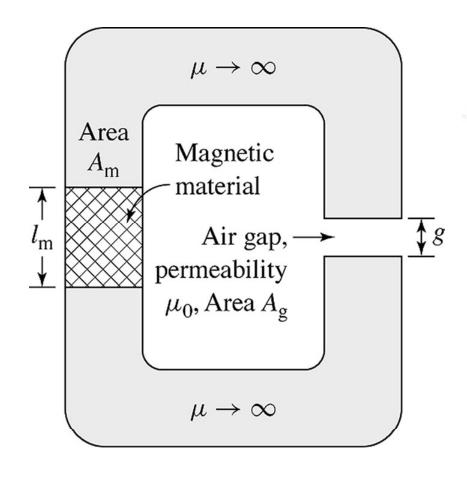
Example 1: Permanent Magnet in a Magnetic Ckt

Using Ampere's law (and noting that our approximation of infinite μ assures that H = 0 in the steel) we note:

$$H_m l_m + H_g g = 0$$

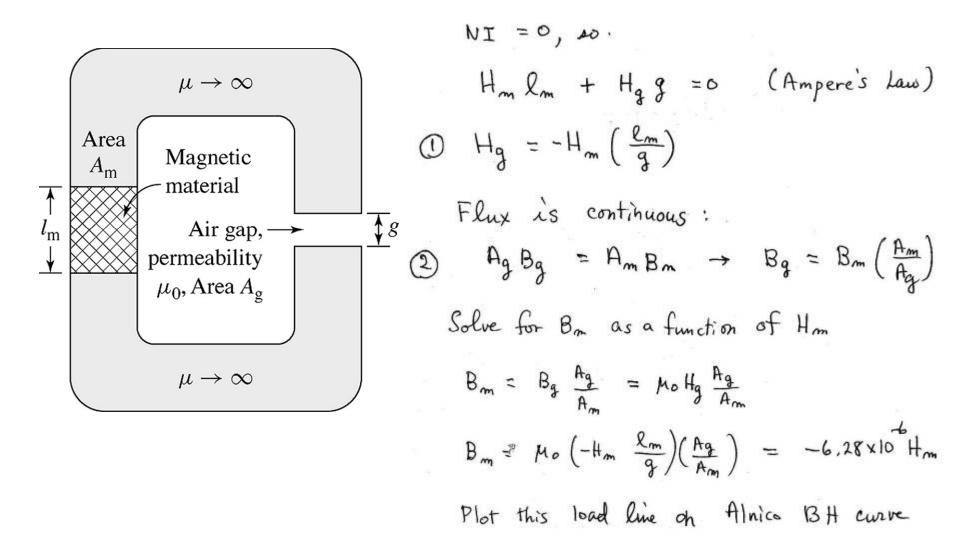

where H_g is the magnetic field in the airgap. Next we use Gauss' magnetic law which says that flux is continuous around a loop, to get:

$$B_m A_m = B_g A_g$$

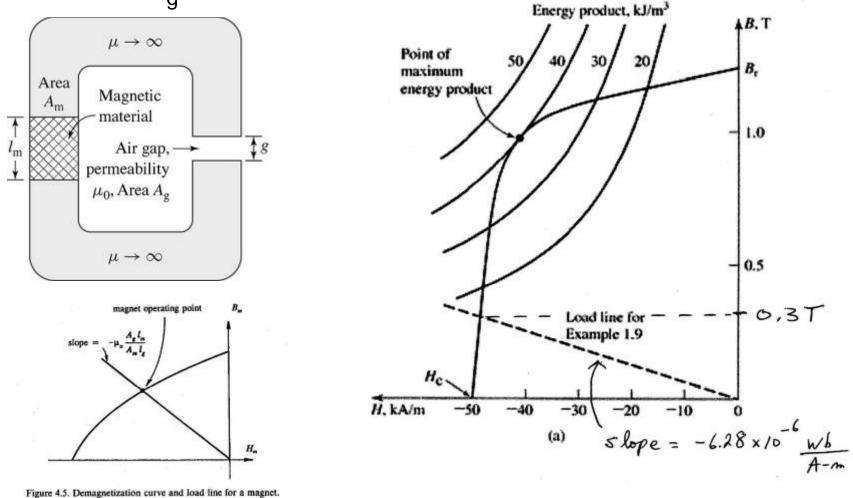

where A_m is the cross-sectional area of the permanent magnet and B_g is the cross-sectional area of the airgap. Noting that $B_g = \mu_0 H_g$, we next solve for B_m , as a function of H_m , resulting in the load line equation:

$$B_m = -\mu_o \left(\frac{l_m A_g}{g A_m}\right) H_m$$

Example 1: Permanent Magnet in a Magnetic Ckt

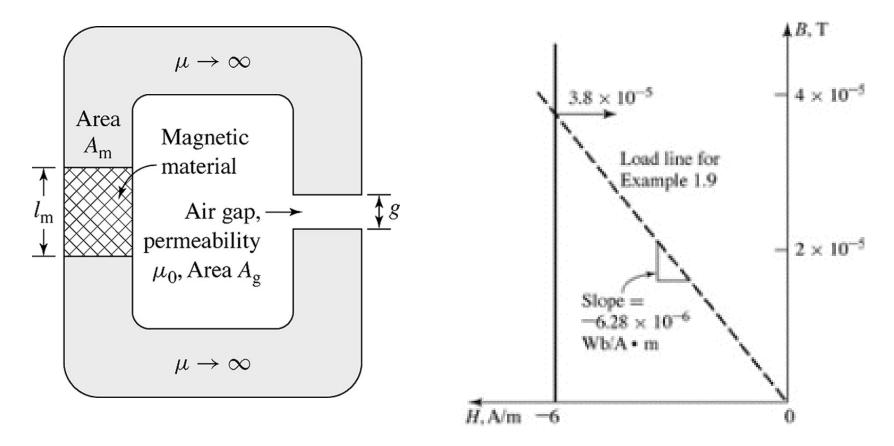


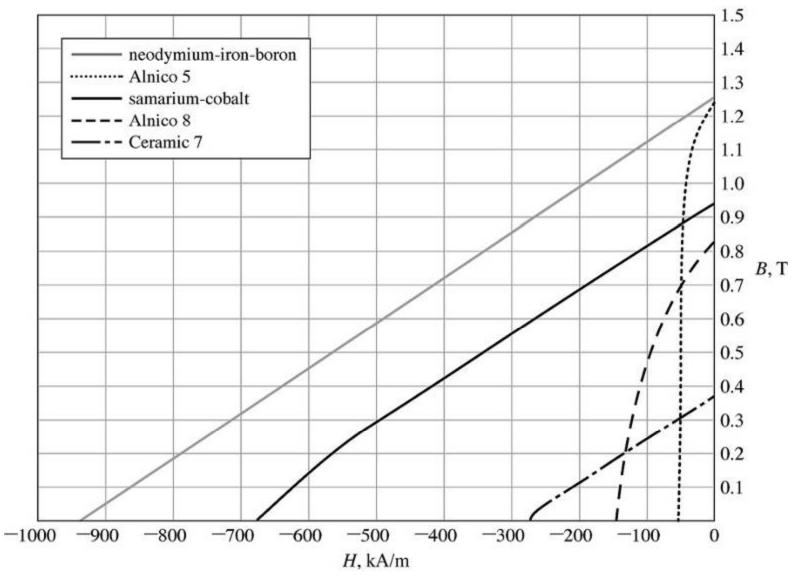
Example 2: Permanent Magnet in a Magnetic Ckt


Example: = 0.2 cm 1.0 Cm $A_m = A_g = 4 cm^2$ Find flux in airgap Bg for magnetic material (a) Alnico 5 (b) M-5 steel

Example 2: With Alnico Permanent Magnet

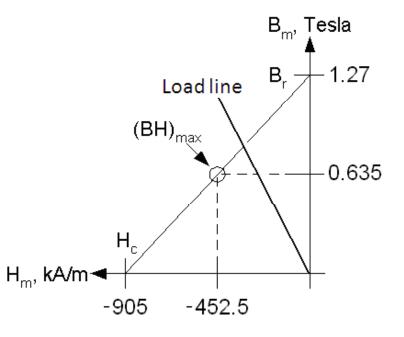
Example 2: With Alnico Permanent Magnet


• Result: $B_q = 0.3$ Tesla


Reference:P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 89© M. T. Thompson, 2009Permanent Magnets33

Example 2: Load Line Solution with M-5 Steel

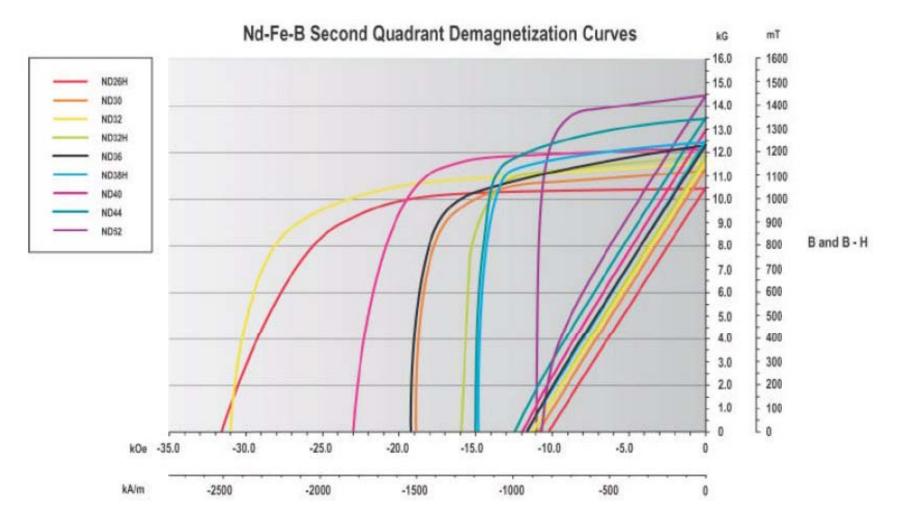
- Use same load line; B_g = 0.38 Gauss (much lower than with Alnico)
- Note: Earth's magnetic field ~ 0.5 Gauss


Some Common Permanent Magnet Materials

© M. T. Thompson, 2009

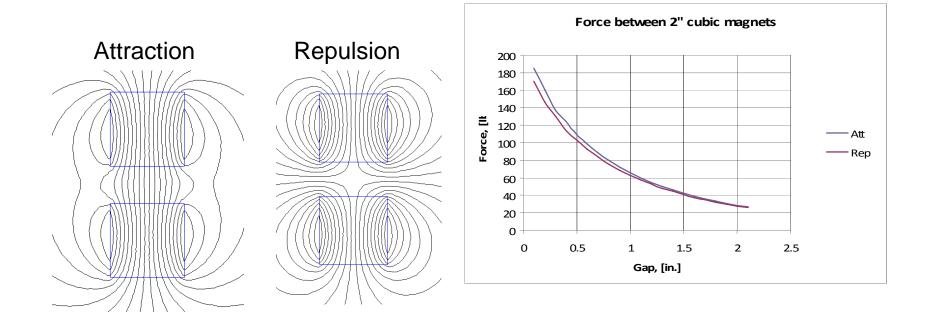
Typical NdFeB B-H Curve

- Neodymium-iron-boron (NdFeB) is the highest strength permanent magnet material in common use today
- Good material for applications with temperature less than approximately 80 - 150C
- Cost per pound has reduced greatly in the past few years
- Curve below for "grade 40" or 40 MGOe material



Typical NdFeB B-H Curve --- Elevated Temp.

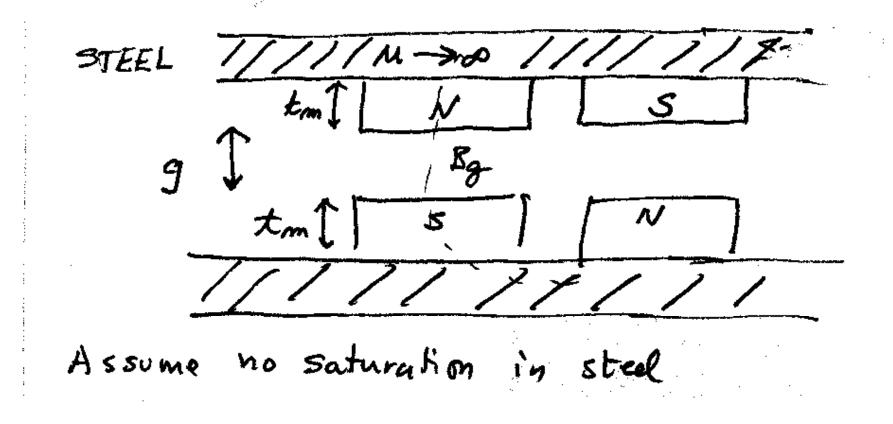
- Note that the B/H curve degrades at elevated temperatures
- If you operate the magnet below the "knee" irreversible demagnetization may result


NdFeB B-H Curves for Different Grades

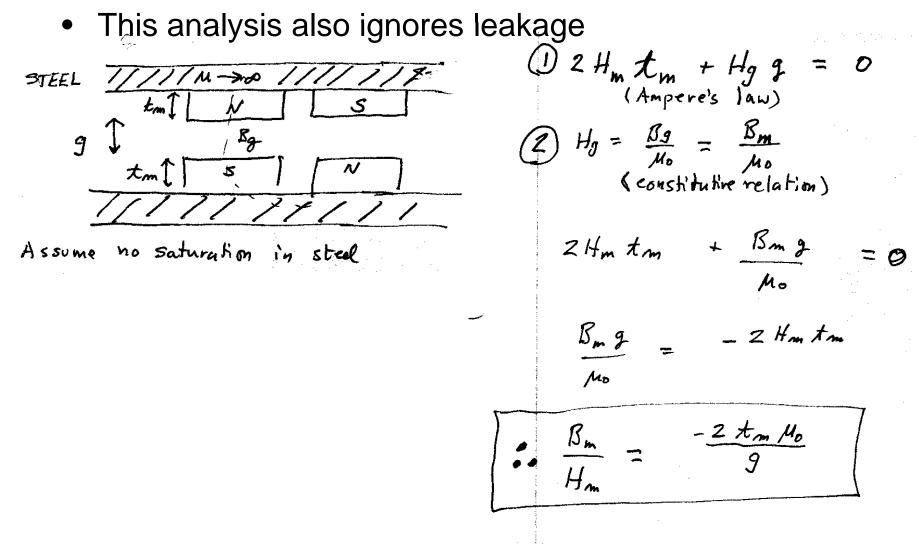
Reference: Dexter Magnetics, Inc. http://www.dextermag.com

© M. T. Thompson, 2009

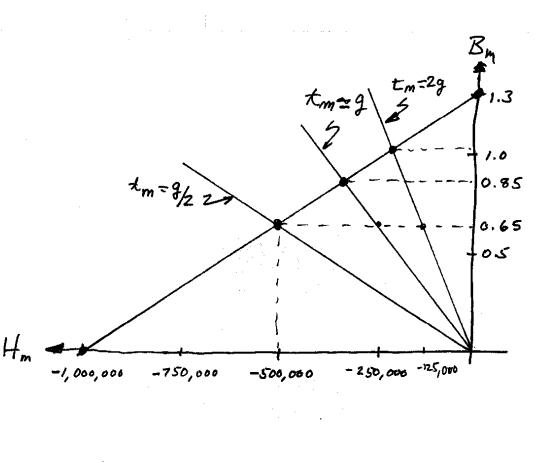
Example 3: Force Between 2" NdFeB Magnet Cubes vs. Airgap


Example 4: Stray Fields from 2" Grade 40 Magnet Cube

• At distances r = 6", 12" and 24"

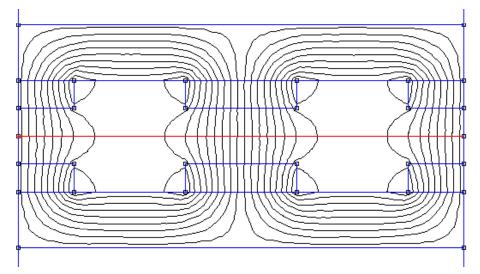


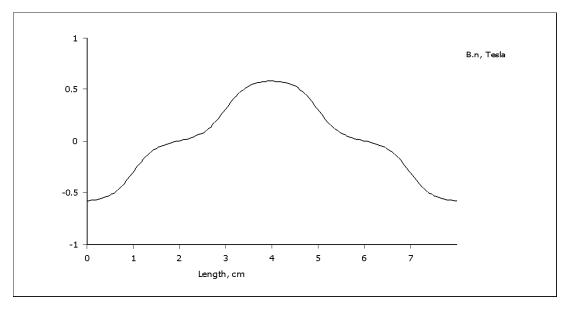
Example 5: Magnetic Circuit With Steel


- Estimate airgap field B_g assuming grade 42 NdFeB
- Airgap g, magnet thickness t_m

Example 5: Magnetic Circuit With Steel

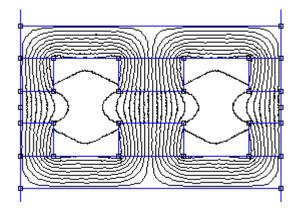
Example 5: Magnetic Circuit With Steel ---Operating Point vs. Magnet Thickness t_m

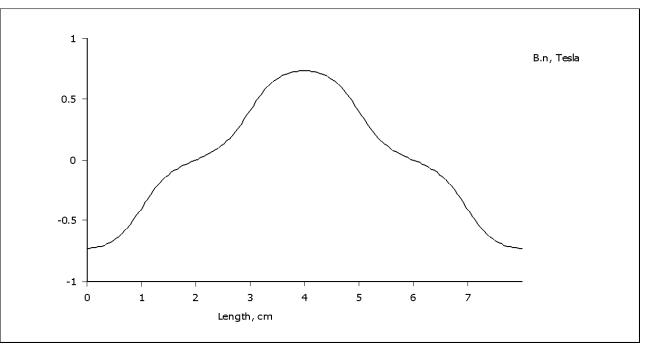

$$f_{m} = \frac{g}{2} \longrightarrow B_{g} \sim 0.65T$$


$$f_{m} \simeq g \longrightarrow B_{g} \sim 0.85T$$

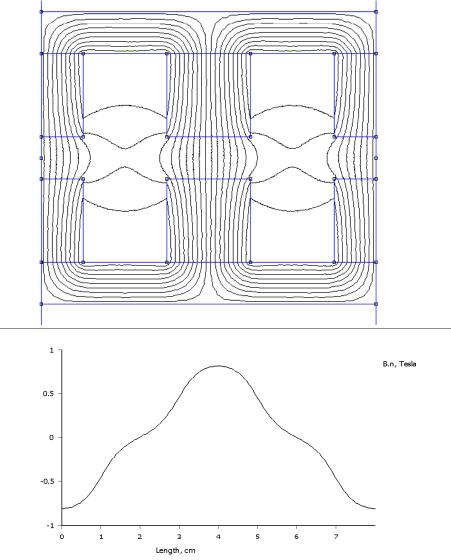
$$f_{m} = 2g \longrightarrow B_{g} \sim 1.05T$$

© M. T. Thompson, 2009

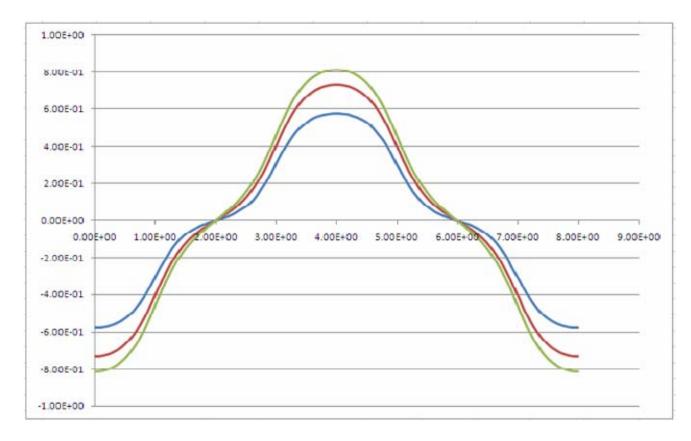

Example 5: 2D FEA, Magnet Thickness $t_m = g/2$

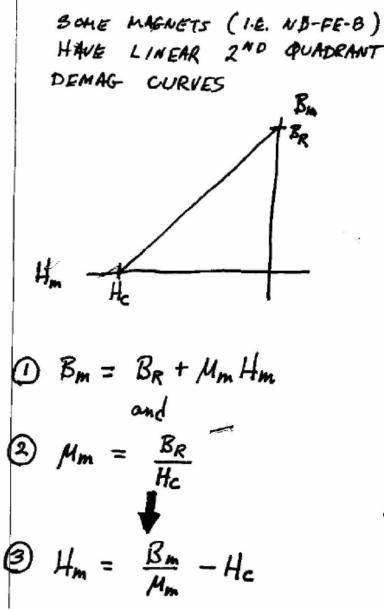


© M. T. Thompson, 2009


Example 5: 2D FEA, Magnet Thickness t_m = g

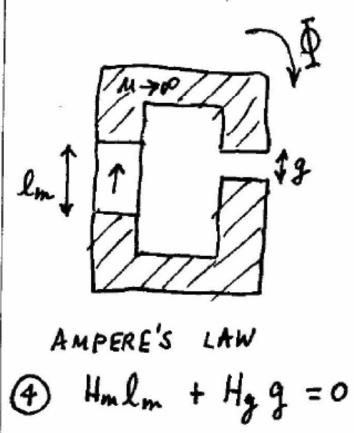
© M. T. Thompson, 2009


Example 5: 2D FEA, Magnet Thickness t_m = 2g

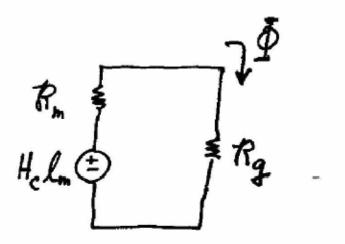

© M. T. Thompson, 2009

Example 5: Comparison of Different Magnet Thicknesses

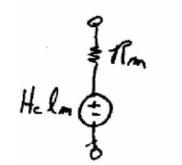
	Bpk, 2D analytic	Bpk, 2D FEA
<u>tm</u> = g/2	0.65T	0.58T
tm = g	0.85T	0.73T
tm=2g	1.05T	0.82T


© M. T. Thompson, 2009

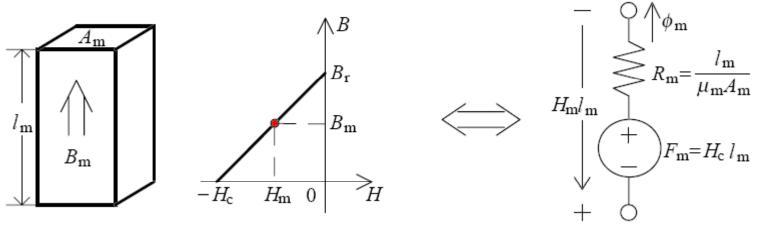
Reference: E. P. Furlani, *Permanent Magnet and Electromechanical Devices*, Academic Press, 2001


© M. T. Thompson, 2009

LET'S USE THIS IN A MAGNETIC C(RCUIT WITH AIRGAP:



PUT 3 INTO (4) $\left(\frac{B_{m}}{M_{m}}-H_{c}\right)l_{m}+H_{g}g=0$ $\dot{\Phi} = B_g A_g = B_m A_m$ 80, 5 REDUCES TO: $\Phi(\mathcal{R}_q + \mathcal{R}_m) = Helm$


WE CAN MODEL THIS THE FOLLOWS !

PM MODEL :

© M. T. Thompson, 2009

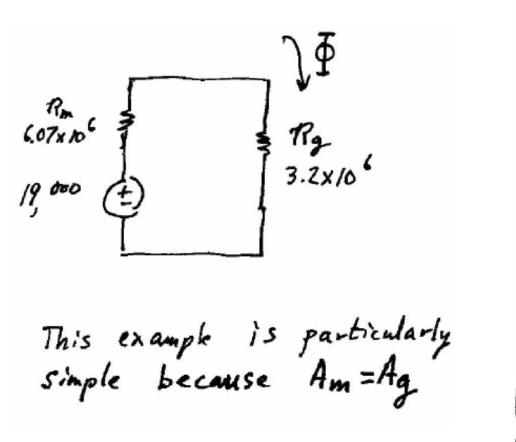
Magnetic circuit model of a magnet with linear demagnetization curve

Example 6: Circuit Modeling of Permanent Magnets

- 10

$$\frac{Example}{Grade 37 \text{ NdFeB}}$$
Grade 37 NdFeB

$$H_c = 950,000 \text{ A/m}$$


$$Mm = 1.048 \text{ Mo}$$

$$lm = 2 \text{ cm}$$

$$g = 1 \text{ cm}$$

$$A_m = A_g = 25 \text{ cm}^2$$
Find Bg

Example 6: Circuit Modeling of Permanent Magnets

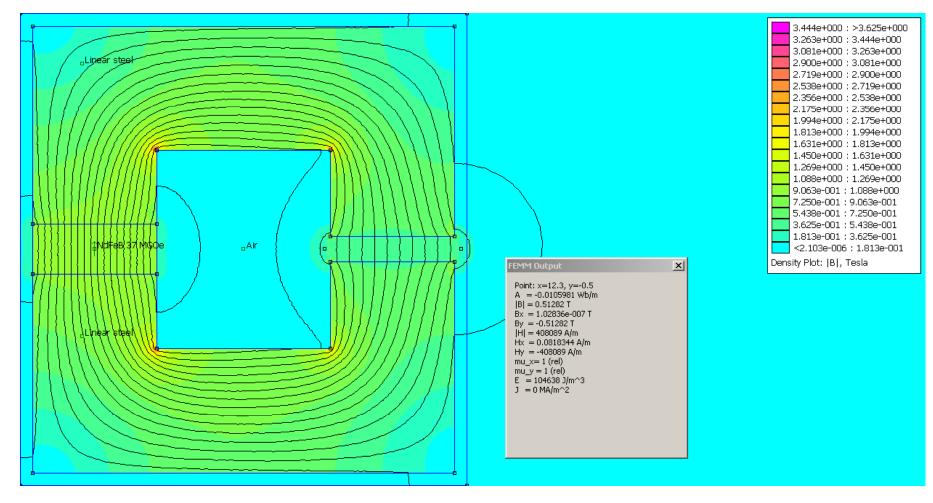
$$\frac{Solution}{H_{c} l_{m}} = (950,000)(0.02) = 19,000}$$

$$R_{lm} = \frac{l_{m}}{M_{m}A_{m}} = \frac{0.02}{(1.048)(417\times10^{-7})(25\times10^{-4})}$$

$$= 6.07\times10^{6}$$

$$R_{g} = \frac{9}{M_{0}A_{g}} = \frac{0.00}{(417\times10^{-7})(25\times10^{-4})}$$

$$= 3.2\times10^{6}$$

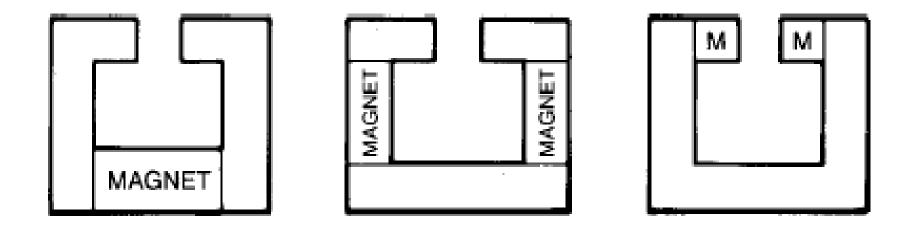

$$\overline{P} = \frac{H_{c} l_{m}}{R_{m} * R_{g}} = 2.04\times10^{-3} \text{ Wb}$$

$$R_{g} = \frac{\overline{\Phi}}{A_{g}} = \frac{2.04\times10^{-3}}{25\times10^{-4}}$$

$$R_{g} = \frac{1}{M_{g}} = \frac{2.04\times10^{-3}}{25\times10^{-4}}$$

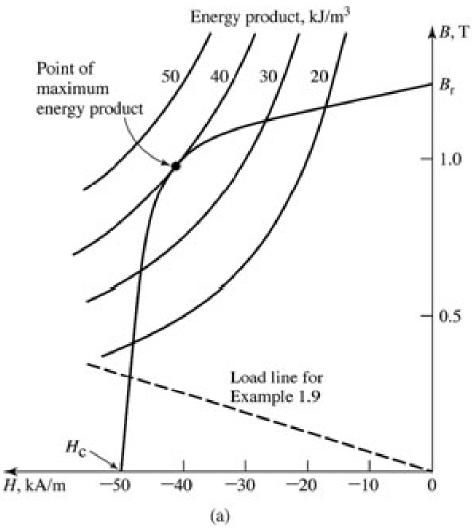
© M. T. Thompson, 2009

Example 6: Circuit Modeling of Permanent Magnets---FEA


Method of Images

• These two are equivalent in the upper half-plane

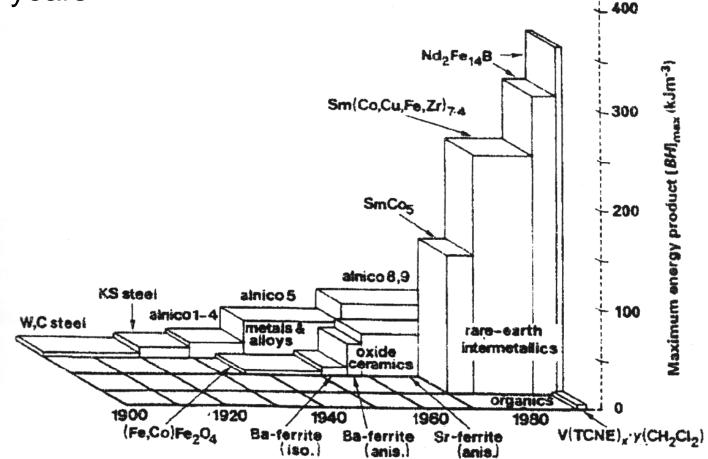
Another Example: Magnetic Circuit With Steel


• Which scenario has the lowest leakage flux?


Reference: www.mmpa.org

Maximum Energy Product

• BH has units of Joules per unit volume

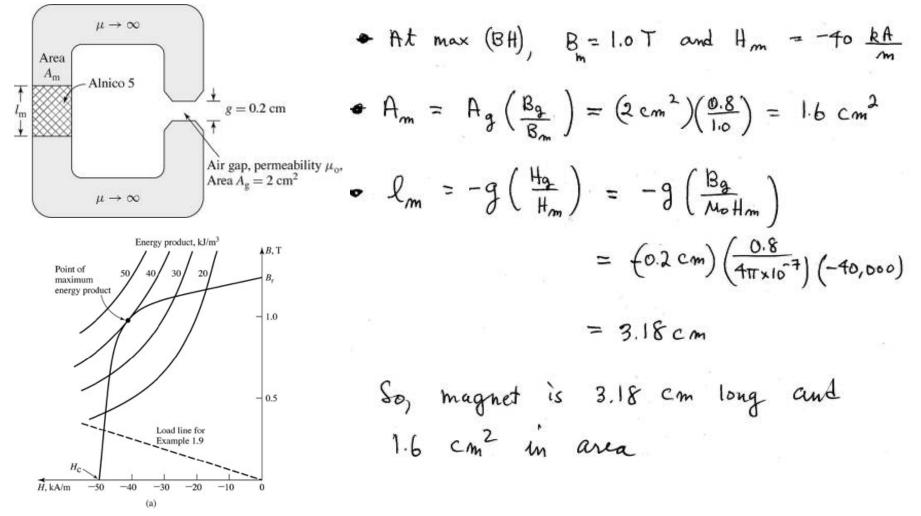

Maximum Energy Product

Why is maximum energy product important?
() Bg = Bm
$$\left(\frac{Am}{Ag}\right)$$

() $\frac{H_m}{H_g} \frac{Im}{g} = -1$
Let's find Bg²
 $B_g^2 = B_m \left(\frac{A_m}{Ag}\right) \times M_0 Hg$
 $= -B_m \left(\frac{A_m}{Ag}\right) \mu_0 \frac{H_m}{g} Im$
 $= M_0 \left(\frac{V_0 I mag}{V_0 I g q p}\right) \left(-B_m H_m\right)$
Solve for $V_0 I_{mag}$
 $V_{0l_{mag}} = B_g^2 \frac{V_0 I g q p}{(-B_m H_m)}$
To use minimum volume of magnetic material
at a given Bg, operate magnet at (BH) max
point:

Progress in PM Specs

 Maximum (BH)_{max} product has gone up a lot in the past 20 years



Reference: J. Evetts, Concise Encyclopedia of Magnetic and Superconducting Materials, Pergamon Press, Oxford, 1992

© M. T. Thompson, 2009

Example 7: Use of Maximum Energy Product

Find magnet dimensions for desired B_g = 0.8 Tesla operating at (BH)_{max}

© M. T. Thompson, 2009

Comparison of Different PM Types

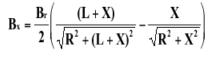
Table 2.1 Magnet Material Comparisons

Material	Grade	Br	Hc	Hci	BHmax	T _{max} (Deg C)*
NdFeB	39H	12,800	12,300	21,000	40	150
SmCo	26	10,500	9,200	10,000	26	300
NdFeB	B10N	6,800	5,780	10,300	10	150
Alnico	5	12,500	640	640	5.5	540
Ceramic	8	3,900	3,200	3,250	3.5	300
Flexible	1	1,600	1,370	1,380	0.6	100

* T_{max} (maximum practical operating temperature) is for reference only. The maximum practical operating temperature of any magnet is dependent on the circuit the magnet is operating in.

Reference: www.magnetsales.com

Magnetic Conversion Factors


Table 3.2 Conversion Factors

Multiply	By	To obtain
inches	2.54	centimeters
lines/in ²	0.155	Gauss
lines/in ²	1.55 × 10 ⁻⁵	Tesla
Gauss	6.45	lines/in ²
Gauss	0 ⁻⁴	Tesla
Gilberts	0.79577	ampere turns
Oersteds	79.577	ampere turns /m
ampere turns	0.4π	Gilberts
ampere turns/in	0.495	Oersteds
ampere turns/in	39.37	ampere turns/m

Reference: <u>www.magnetsales.com</u>

Magnetic Field Estimates

a. Cylindrical Magnets

Equation 4

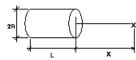
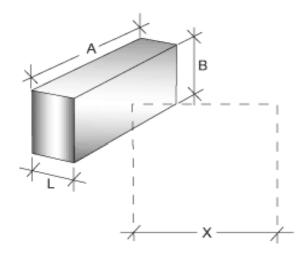


Table 4.1 shows flux density calculations for a magnet 0.500" in diameter by 0.250" long at a distance of 0.050" from the pole surface, for various materials. Note that you may use any unit of measure for dimensions; since the equation is a ratio of dimensions, the result is the same using any unit system. The resultant flux density is in units of gauss.

Table 4.1 Flux Density vs. Material

Material and Grade	Residual Flux Density, Br	Flux at distance of 0.050" from surface of magnet
Ceramic 1	2,200	629
Ceramic 5	3,950	1,130
SmCo 18	8,600	2,460
SmCo 26	10,500	3,004
NdFeB 35	12,300	3,518
NdFeB 42H	13,300	3,804

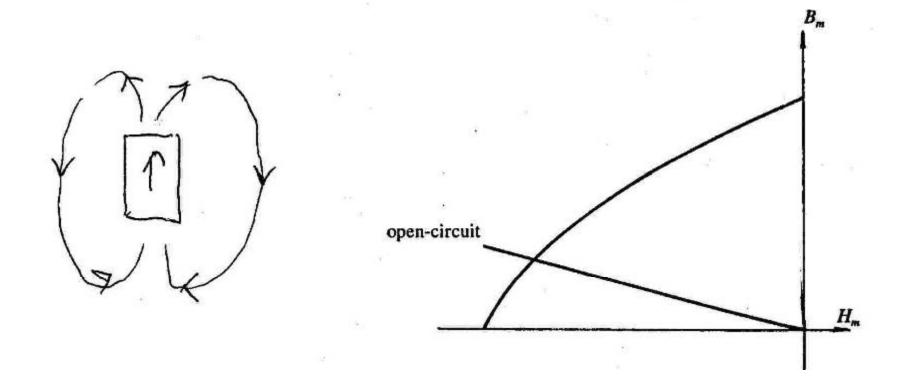
Reference: <u>www.magnetsales.com</u>


Magnetic Field Estimates

b. Rectangular Magnets

$$B_{x} = \frac{B_{r}}{\Pi} \left(\tan^{-1} \frac{AB}{2X\sqrt{4X^{2} + A^{2} + B^{2}}} - \tan^{-1} \frac{AB}{2(L + X)\sqrt{4(L + X)^{2} + A^{2} + B^{2}}} \right)$$

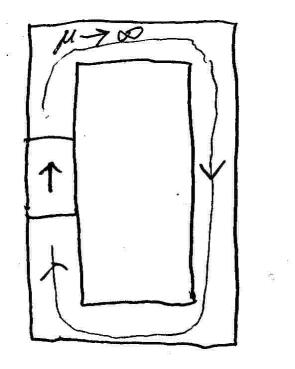
Equation 5


(where all angles are in radians)

Reference: www.magnetsales.com

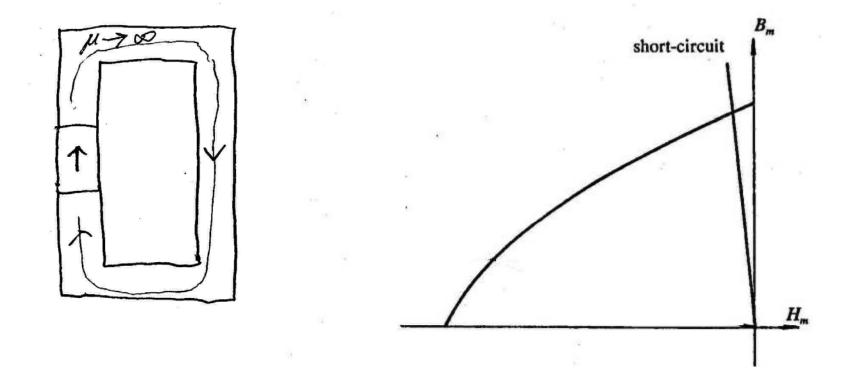
© M. T. Thompson, 2009

Open Circuited Permanent Magnet



Reference: P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 89

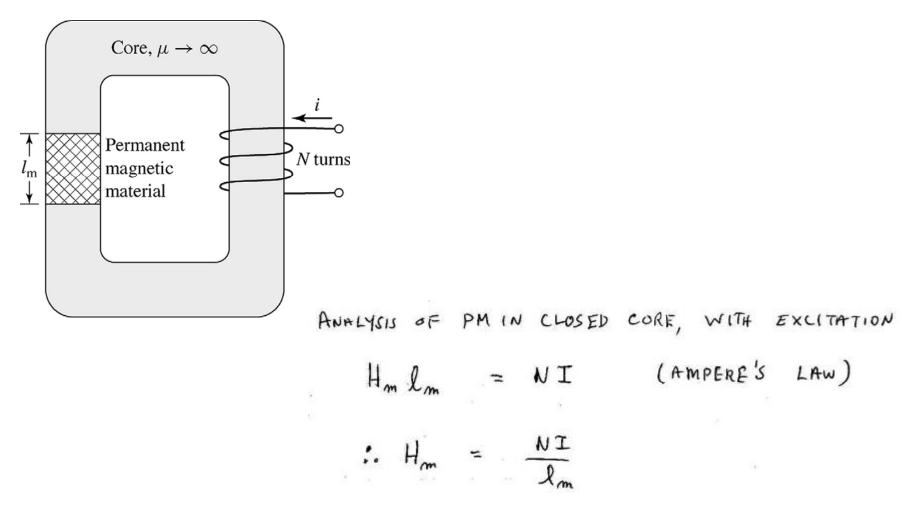
© M. T. Thompson, 2009


Short-Circuited Permanent Magnet

• Find B inside core, ignoring any leakage and assuming infinite permeability in core

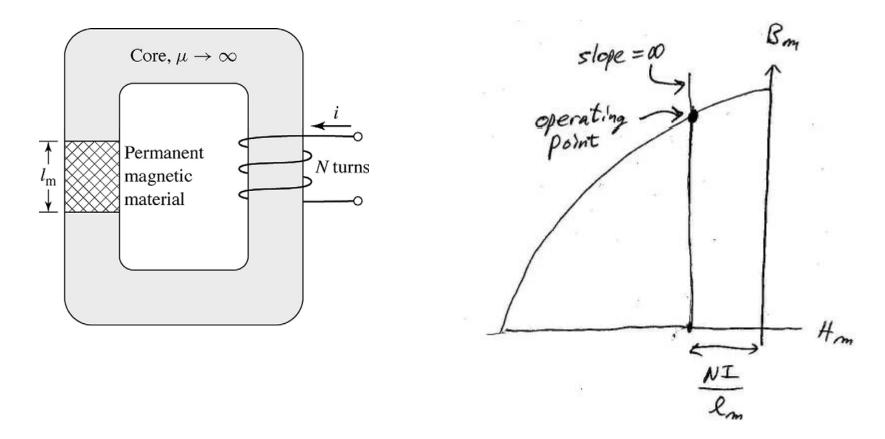
Short Circuited Permanent Magnet

- For infinite permeability, load line is vertical
- Intersection of load lines occurs at $B \approx B_r$

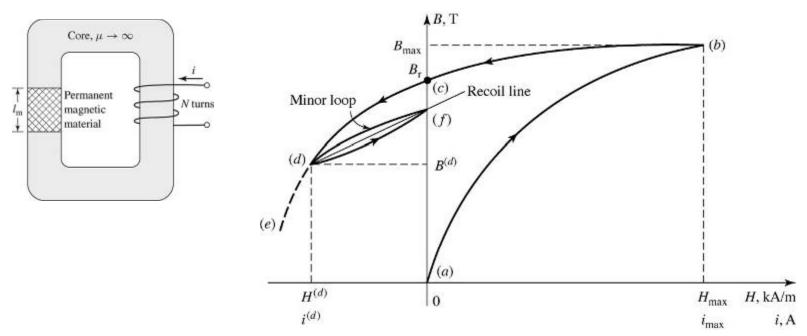


Reference: P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 89

© M. T. Thompson, 2009

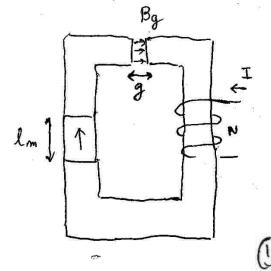

PM and a Winding

• Many motors have permanent magnets, steel and windings



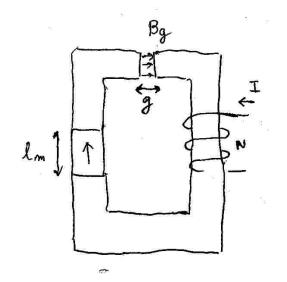
PM and a Winding --- Load Line

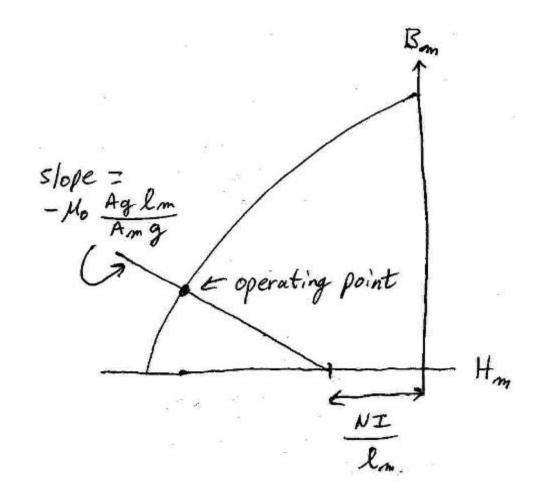
 Note that demagnetization can occur if current is sufficiently high


PM and a Winding --- Graphical Analysis

- At point (a), steel is initially unmagnetized
- As current increases, B and H follow the locus from (a) to (b)
- From (b) to (c), current reduces to zero, and flux density reduces to B_r at i = 0
- As current goes negative from (c) to (d), curve traces hysteresis loop. Note that operating point (d) is the same operating point we'd get if there was zero current and an airgap.
- If current goes further negative, locus traces from (d) to (e)
- But, if current is reduced to zero at point (d), locus traces minor loop from (d) to (f). The "recoil line" is an approximation to this minor loop

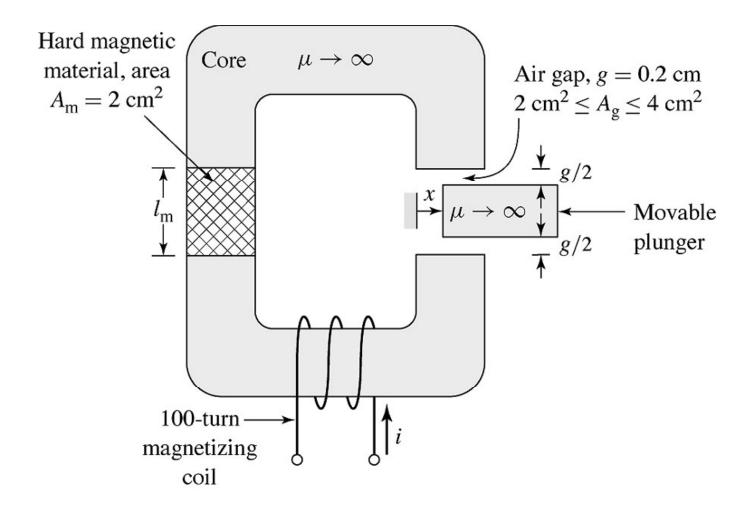
© M. T. Thompson, 2009

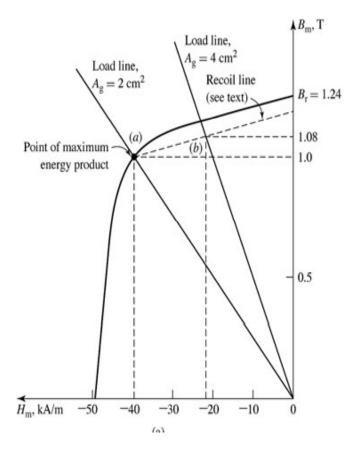

Another Example --- Excitation and Airgap



()
$$H_m l_m + H_g \dot{g} = NI$$
 (AMPERE'S LAW)
(2) $Bg = \mu_0 H_g$. (CONSTRUTIVE)
(3) $B_m A_m = B_g A_g$. (GAMSS' MAGNETIC LAW)
SOLVE FOR $B_m - H_m$ LOAD LINE
: $B_m = -M_0 \left(\frac{A_g l_m}{A_m g}\right) \left(H_m - \frac{NI}{l_m}\right)$

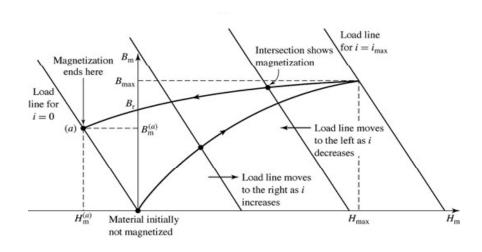
© M. T. Thompson, 2009


Another Example --- Excitation and Airgap --- Load Line



Another Example

• Let's figure out how to magnetize



Another Example

(a) FIND MAGNET LENGTH
$$l_m$$
 SO MAGNET OPERATES
ON RECOIL LINE INTERSECTING BH_{max} At $Ag = 2c_m^2$
SOLN:
 $B_{max} = 1.0T$, $H_{max} = -90$ kA/m
FROM GAUSS' LAW $B_g = \frac{A_m}{A_g} B_m$ ()
FROM AMPERE'S LAW $\frac{H_m l_m}{H_g g} = -1$ (2)
From (2) $B_g = -\frac{M_0 H_m l_m}{g}$
Put this into (): $-\frac{M_0 H_m l_m}{g} = \frac{A_m B_m}{A_g}$
 $l_m = g \left(\frac{A_m}{A_g}\right) \left(\frac{B_m}{-\mu_0 H_m}\right)$
 $l_m = 0.2 c_m \left(\frac{2c_m^2}{2c_m^2}\right) \left(\frac{1.0 T}{(4\pi \times 10^7)(4\times 10^4)}\right) = \left[\frac{4c_m}{4c_m}\right]$

Another Example

(b) How TO MAGNETIZE FULLY?
(1) NI = Hm lm + Hg g
(2) Bm Am = Bg Ag = Mo Hg Ag
Solve for Bm as a function of Hm and I
Bm =
$$-Mo\left(\frac{Ag}{Am}\right)\left(\frac{lm}{g}\right)Hm + \frac{Mo}{g}\left(\frac{Ag}{Am}\right)I$$

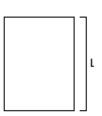
= $-2.5 \times 10^{-5} H_m + 6.28 \times 10^{-2} I$
ESTIMATE Bmax and Hmax
Bmax $\approx 2.1T$
Hmax $\approx 200 \text{ KA/m}$
(.I = 45 A

What Can You Buy?

Part Number	Material	Dianeter	Length	Orientation
PN35C1250B-N	N36	0.123	0.250	L
PN45C0140B	N45	0.140	0.500	D
PN45C0189B	N45	0.188	0.057	L
94C5668B	94EB	0.250	0.100	L
CM40685	4014	0.250	0.125	L
PN36C0250B	N36	0.250	0.250	L
97C5513B	97CB	0.250	2.000	L
97C5613B	97CB	0.251	0.200	L
PN45C1200B	N45	0.328	1.200	D
PN36SHC0330B	N36SH	0.330	0.330	L
94055360	94EB	0.370	0.250	L
97C5446C	97CB	0.375	0.125	L
94C5562B	94EB	0.375	2.100	L
94C4822B	94EA	0.499	0.188	L
NA67A460	34B	0.500	0.190	L
CM41085-2630	2630	0.500	0.250	L
CM41086-3220	3520	0.500	0.250	L
CM40713-3714	4014	0.500	0.250	L
CM41087-3714	4014	0.625	0.250	L
CM41088-2630	2630	0.625	0.250	L
CM40884-3714	4014	0.866	0.393	L
CM41089-3714	4014	0.875	0.500	L
CM41090-2630	2630	0.875	0.500	L
CM41091-2630	2630	1.000	0.500	L
CM41092-3220	3520	1.000	0.500	L
CM41093-3714	4014	1.000	0.500	L

NdFeB Rounds

Reference: www.dextermag.com


© M. T. Thompson, 2009

What Can You Buy?

Part Number	Material	Thickness	Width	Length	Orientation
CM41030-3714	4014	0.250	0.325	0.500	T
CM41094-2630	2630	0.250	0.500	0.500	T
CM41095-3220	3520	0.250	0.500	0.500	T
CM41096-3714	4014	0.250	0.500	0.500	T
PN36HR2933B	N36H	0.293	0.560	1.044	T
PN38HR0990B	N38H	0.315	0.750	0.990	T
PN38HR0375B	N38H	0.375	0.866	2.362	T
CM40325-3714	4014	0.500	0.750	0.750	T
CM40729-3714	4014	0.500	1.000	1.000	T
CM41097-2630	2630	0.500	1.000	1.000	T
CM41098-3220	3520	0.500	1.000	1.000	T
CM40975-3714	4014	0.590	0.750	0.750	T
PN38HR0122B	N38H	1.000	2.000	2.000	T
CM41099-2630	2630	1.000	2.000	2.000	T
CM40680-3714	4014	1.000	2.000	2.000	T
PN48R0100B	N48	1.000	2.000	2.000	T

NdFeB Blocks

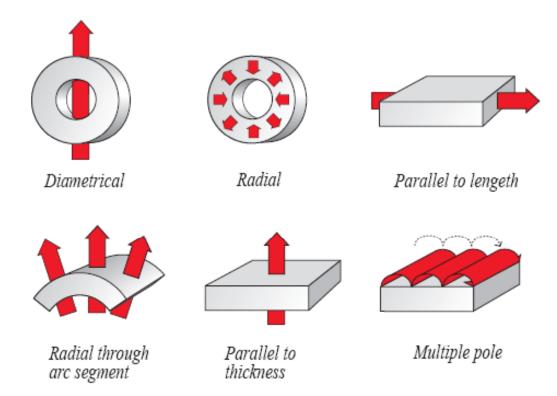
Reference: www.dextermag.com

Rectangular Magnets - Finished Sizes sorted in ascending order of Length, Width, and then Thickness.

Itom

What Can You Buy?

Item Number	Grade	L	w	т*	Condition
35NE111111	35	0.175	0.175	0.175	Die Pressed, Machined
35NE111111- NI	35	0.175	0.175	0.175	Die Pressed, Machined, Nickel Plated
30NE261916- NI	30	0.400	0.290	0.250	Die Pressed, Machined, Nickel Plated
35NE301412	35	0.475	0.230	0.190	Die Pressed, Machined
35NE323232- NI	35	0.500	0.500	0.500	Die Pressed, Machined, Nickel Plated
35NE501212	35	0.790	0.195	0.195	Die Pressed, Machined
35NE642424	35	1.000	0.375	0.375	Die Pressed, Machined
35NE646416	35	1.000	1.000	0.250	Die Pressed, Machined
35NE646432	35	1.000	1.000	0.500	Die Pressed, Machined
35NE646432- NI	35	1.000	1.000	0.500	Die Pressed, Machined, Nickel Plated
35NE209620	35	1.500	0.305	0.305	Die Pressed, Machined
35NE281107	35	2.000	0.170	0.107	Die Pressed, Machined
35NE2812832	35	2.000	2.000	0.500	Die Pressed, Machined
35NE2812832	35	2.000	2.000	0.500	Die Pressed, Machined
35NE2812864	35	2.000	2.000	1.000	Die Pressed, Machined


Tolerances on "machined" blocks are the greater of $\pm1.5\%$ of the dimension or $\pm0.015"$ on cross sectional dimensions, and $\pm0.005"$ on the orientation direction.

Reference: www.magnetsales.com

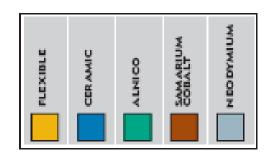
© M. T. Thompson, 2009

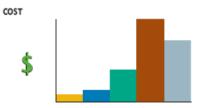
The T* dimension represents the orientation direction.

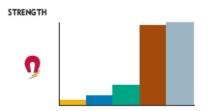
Magnetization Patterns

Different Magnetizing Patterns Give Different Results

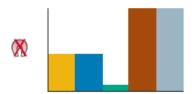
Except for the regular Flexible and Ceramic 1 materials, all magnet materials are "pre-oriented" and can only be magnetized in a particular direction.

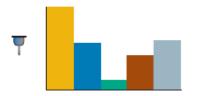

Standard (or "conventional") magnetization is straight through the orientation direction, and produces one North pole and one South pole. The Rare Earth magnets are extremely difficult to magnetize in non-standard ways. However, the Flexible and Ceramic types can be magnetized in many non-standard ways to give special results.

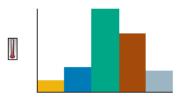

Reference: www.magnetsales.com


© M. T. Thompson, 2009

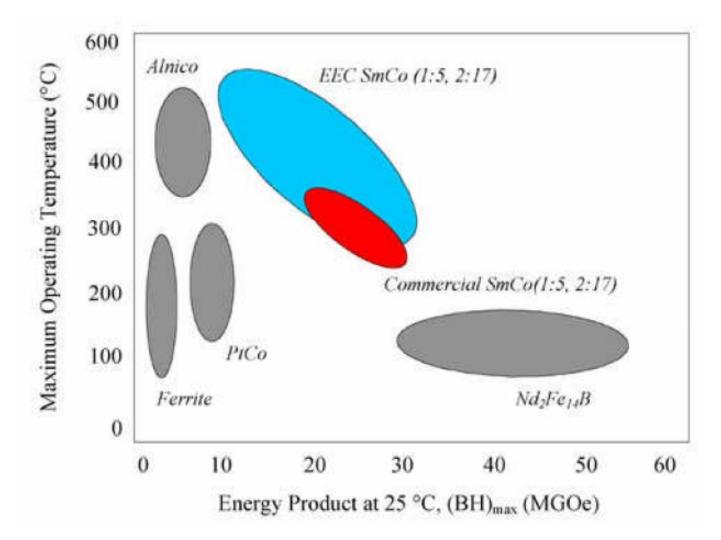
Comparison


Magnet Materials Color Index

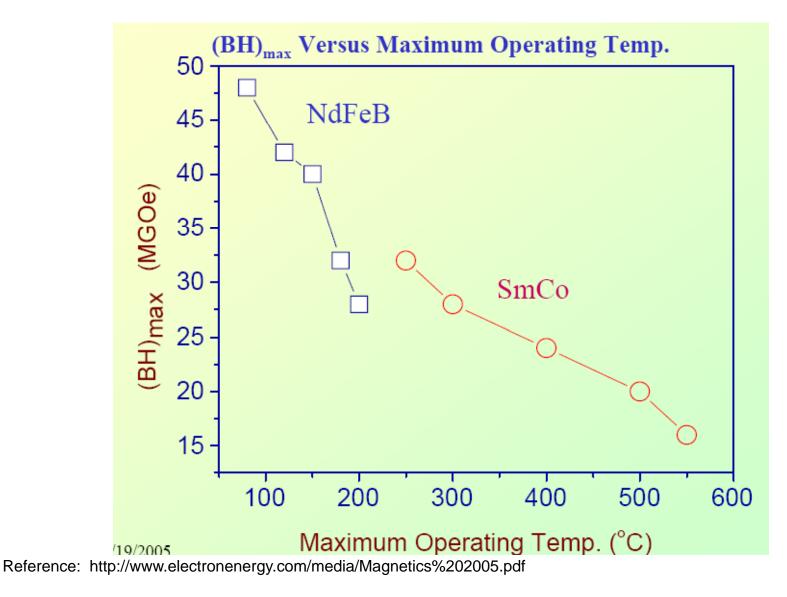



RESISTANCE TO DEMAGNETIZATION

MACHINABILITY


MAXIMUM PRACTICAL OPERATING TEMPERATURE

Reference: www.magnetsales.com


© M. T. Thompson, 2009

Comparison of Maximum Operating Temperatures

Comparison of Maximum Operating Temperatures

© M. T. Thompson, 2009

Quotes

It is well to observe the force and virtue and consequence of discoveries, and these are to be seen nowhere more conspicuously than in printing, gunpowder, and the magnet. --- Sir Francis Bacon

The mystery of magnetism, explain that to me! No greater mystery, except love and hate. ---John Wolfgang von Goethe

References

- Peter Campbell, <u>Permanent Magnet Materials and Their</u> <u>Applications</u>, Cambridge University Press, 1994
- Edward Furlani, <u>Permanent Magnet and Electromechanical</u> <u>Devices</u>, Academic Press, 2001
- Rollin J. Parker, <u>Advances in Permanent Magnetism</u>, John Wiley, 1990
- Lester Moskowitz, <u>Permanent Magnet Design and</u> <u>Application Handbook</u>, 2nd edition, Krieger, 1995
- Vacuumschmelze, <u>Soft Magnetic Materials</u>, 1979
- Dexter Magnetics, <u>www.dextermag.com</u>
- Magnet Sales, Inc., <u>www.magnetsales.com</u>
- Magnetic Materials Producers Association, Std. PMG-88, "Permanent Magnet Guidelines"