Power Electronics Notes 30A Review of Magnetics

Marc T. Thompson, Ph.D. Thompson Consulting, Inc. 9 Jacob Gates Road Harvard, MA 01451 Phone: (978) 456-7722 Fax: (240) 414-2655 Email: marctt@thompsonrd.com Web: http://www.thompsonrd.com

Portions of these notes excerpted from the CD ROM accompanying Fitzgerald, Kingsley and Umans, <u>Electric Machinery</u>, 6th edition, McGraw Hill, 2003 and from the CD ROM accompanying Mohan, Undeland and Robbins, <u>Power Electronics</u> <u>Converters, Applications and Design</u>, 3d edition, John Wiley 2003. Other notes © Marc Thompson, 2005

Overview

- Review of Maxwell's equations
- Magnetic circuits
- Flux, flux linkage, inductance and energy
- Properties of magnetic materials

Review of Maxwell's Equations

James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and theoretical physicist. His most significant achievement was the development of the classical electromagnetic theory, synthesizing all previous unrelated observations, experiments and equations of electricity, magnetism and even optics into a consistent theory. His set of equations—Maxwell's equations—demonstrated that electricity, magnetism and even light are all manifestations of the same phenomenon: the electromagnetic field. From that moment on, all other classical laws or equations of these disciplines became simplified cases of Maxwell's equations. Maxwell's work in electromagnetism has been called the "second great unification in physics", after the first one carried out by Newton.

James Clerk Maxwell (1831-1879)

Reference: www.wikipedia.com

Review of Maxwell's Equations

- First published by James Clerk Maxwell in 1864
- Maxwell's equations couple electric fields to magnetic fields, and describe:
 - Magnetic fields
 - Electric fields
 - Wave propagation (through the wave equation)
- There are 4 Maxwell's equations, but in magnetics we generally only need 3:
 - Ampere's Law
 - Faraday's Law
 - Gauss' Magnetic Law

Ampere's Law

• Flowing current creates a magnetic field

André-Marie Ampère (1775-1836)

Ampere's Law

• Flowing current creates a magnetic field

$$\oint_C \vec{H} \cdot d\vec{l} = \int_S \vec{J} \cdot d\vec{A} + \frac{d}{dt} \int_S \varepsilon_o \vec{E} \cdot d\vec{A}$$

 In magnetic systems, generally there is high current and low voltage (and hence low electric field) and we can approximate for low *d/dt*.

$$\oint_C \vec{H} \cdot d\vec{l} \approx \int_S \vec{J} \cdot d\vec{A}$$

• The magnetic flux density integrated around a closed contour equals the net current flowing through the surface bounded by the contour

Field From Current Loop, NI = 500 A-turns

• Coil radius R = 1"

© M. T. Thompson, 2009

Faraday's Law

 A changing magnetic flux impinging on a conductor creates an electric field and hence a current (eddy current)

Michael Faraday (1791-1867)

Faraday's Law

 A changing magnetic flux impinging on a conductor creates an electric field and hence a current (eddy current)

$$\oint_C \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_S \vec{B} \cdot d\vec{A}$$

- The electric field integrated around a closed contour equals the net timevarying magnetic flux density flowing through the surface bound by the contour
- In a conductor, this electric field creates a current by: $\vec{J} = \sigma \vec{E}$
- Induction motors, brakes, etc.

Circular Coil Above Conducting Aluminum Plate

- Flux density plots at DC and 60 Hz
- At 60 Hz, currents induced in plate via magnetic induction create lift force

Gauss' Magnetic Law

Johann Carl Friedrich Gauss (<u>30 April 1777</u> – <u>23 February 1855</u>) was a German mathematician and scientist who contributed significantly to many fields, including number theory, statistics, analysis, differential geometry, geodesy, electrostatics, astronomy, and optics. Sometimes known as the *princeps mathematicorum* (Latin, usually translated as "the Prince of Mathematicians", although Latin *princeps* also can simply mean "the foremost") and "greatest mathematician since antiquity", Gauss had a remarkable influence in many fields of mathematics and science and is ranked as one of history's most influential mathematicians.

Carl Friedrich Gauss (1777-1855)

Reference: www.wikipedia.com

© M. T. Thompson, 2009

Gauss' Magnetic Law

 Gauss' magnetic law says that the integral of the magnetic flux density over any closed surface is zero, or:

$$\oint_{S} \vec{B} \cdot d\vec{A} = 0$$

- This law implies that magnetic fields are $B_3A_3 = B_1A_1 + B_2A_2$ due to electric currents and that magnetic charges ("monopoles") do not exist.
- Note: similar form to KCL in circuits !
- (We'll use this analogy later...)

Gauss' Law ---- Continuity of Flux Lines

Figure 3-13 Continuity of flux.

$$\phi_1 + \phi_2 + \phi_3 = 0$$

Lorentz Force Law

• Experimentally derived rule:

$$\vec{F} = \int \vec{J} \times \vec{B} dV$$

• For a wire of length / carrying current / perpendicular to a magnetic flux density *B*, this reduces to:

$$\vec{F} = IBl$$

Lorentz Force Law and the Right Hand Rule

$$\vec{F} = \int \vec{J} \times \vec{B} dV$$

Reference: http://www.physics.brocku.ca/faculty/sternin/120/slides/rh-rule.html

© M. T. Thompson, 2009

Intuitive Thinking about Magnetics

- By Ampere's Law, the current J and the magnetic field H are generally at right angles to one another
- By Gauss' law, magnetic field lines loop around on themselves
 - No magnetic monopole
- You can think of high- μ magnetic materials such as steel as an easy conduit for magnetic flux.... i.e. the flux easily flows thru the high- μ material

Relationship of B and H

- *H* is the magnetic field (A/m in SI units) and *B* is the magnetic flux density (Weber/m², or Tesla, in SI units)
- B and H are related by the magnetic permeability μ by
 B = μH
- Magnetic permeability μ has units of Henry/meter
- In free space $\mu_0 = 4\pi \times 10^{-7}$ H/m

Right Hand Rule for B and I

Reference: http://sol.sci.uop.edu/~jfalward/magneticforcesfields/magneticforcesfields.html

© M. T. Thompson, 2009

Forces Between Current Loops

Reference: http://sol.sci.uop.edu/~jfalward/magneticforcesfields/magneticforcesfields.html

Constitutive relationships

In free space:

$$\vec{B} = \mu_o \vec{H}$$

Magnetic permeability of free space $\mu o = 4\pi \times 10^{-7}$ Henry/meter. In magnetic material:

$$\vec{B} = \mu \vec{H}$$

Ampere's law:

$$\oint \vec{H} \cdot d\vec{l} = \int_{S} \vec{J} \cdot d\vec{A} \Longrightarrow H_{c}l_{c} + H_{g}g = NI$$

Let's use constitutive relationships:

$$\frac{B_c}{\mu_c}l_c + \frac{B_g}{\mu_o}g = NI$$

© M. T. Thompson, 2009

Inductor with Airgap

Put this into previous expression:
$$NI = \Phi\left(\frac{l_c}{\mu A_c} + \frac{g}{\mu_o A_g}\right)$$

Solve for flux:
$$\Phi = \frac{NI}{\left(\frac{l_c}{\mu A_c} + \frac{g}{\mu_o A_g}\right)} \qquad \text{If } g/\mu_o A_g >> l_c/\mu A_c \qquad \Phi \approx \frac{NI}{\frac{g}{\mu_o A_g}}$$

© M. T. Thompson, 2009

Magnetic-Electric Circuit Analogy

• Use Ohm's law analogy to model magnetic circuits $V \Leftrightarrow NI$

 $I \Leftrightarrow \Phi$ $R \Leftrightarrow \Re$

• Use magnetic "reluctance" instead of resistance

$$R = \frac{l}{\sigma A} \Leftrightarrow \Re = \frac{l}{\mu A}$$

Magnetic reluctance has units of 1/Henry in the SI system

Magnetic-Electric Circuit Analogy

© M. T. Thompson, 2009

C-Core with Gap ---- Using Magnetic Circuits

• Flux in the core is easily found by:

$$\Phi = \frac{NI}{\Re_{core} + \Re_{gap}} = \frac{NI}{\frac{l_p}{\mu_c A_c} + \frac{g}{\mu_o A_c}}$$

• Now, note what happens if $g/\mu_o >>$ I_p/μ_c : the flux in the core is now approximately independent of the core permeability, as: $\Phi \approx \frac{NI}{\Re_{gap}} \approx \frac{NI}{g}$

• Inductance:

 $\mu_{o}A_{c}$

C-Core with Gap --- Finite Element Analysis (FEA)

Fringing Fields in Airgap

• If fringing is negligible, $A_c = A_g$

Summary of Magnetic Quantities

ltem	Name	Units	Comment
Н	Magnetic field	A/m	
J	Current density	A/m ²	
	Current	A	
В	Magnetic flux density	Tesla, or Wb/m ²	
μ_{0}	Magnetic permeability of	4π×10 ⁻⁷ H/m	In magnetic
	free space		steels, μ is higher
Φ	Flux	Wb	Integrate B (flux
			density) over an
			area to get Φ
N	Number of turns in an		
	inductor or transformer		
λ	Flux linkage	Wb-turns	$\lambda = N\Phi$
L	Inductance	H	$L = \lambda I$

Example 1: C-Core with Airgap

• Fitzgerald, Example 1.1: Find current I necessary to generate B = 0.8T in airgap

(9)
$$\mathbf{R}_{c} = \frac{R_{c}}{A_{c} \mu_{c}} = \frac{0.3}{(9 \times 10^{5} \, \text{H})(70,000)(4\pi \times 10^{7})}$$

 $= 3.79 \times 10^{3} \frac{A - turns}{W_{b}}$
 $\mathbf{R}_{g} = \frac{Q}{A_{g} \mu_{o}} = \frac{5 \times 10^{-4}}{(9 \times 10^{7})(4\pi \times 10^{7})} = 4.42 \times 10^{5} \frac{A \cdot T}{W_{b}}$
Note $R_{g} >> R_{c}$

© M. T. Thompson, 2009

Example 1: C-Core with Airgap

Example 2: Simple Synchronous Machine

Problem:

Assuming $\mu \rightarrow \infty$, find airgap flux and flux density. I = 10A, N = 1000, g = 1 cm and A_g = 2000 cm^{2.}

Solution:

$$\Phi = \frac{NI}{\left(\frac{2g}{\mu_o A_g}\right)} = \frac{(1000)(10)}{\left(\frac{2(0.01)}{(4\pi \times 10^{-7})(0.2)}\right)} = 0.13 Wb$$
$$B_g = \frac{\Phi}{A_g} = \frac{0.13}{0.2} = 0.65 \frac{Wb}{m^2} = 0.65T$$

What Does Infinite **µ** Imply?

© M. T. Thompson, 2009

Thermal Modeling

1.00

Flux Linkage and Energy

• By Faraday's law, changing magnetic flux density creates an electric field (and a voltage)

$$\oint_{C} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{A}$$
voltage:
$$\int_{C} = \frac{d\lambda}{dt}$$

Induced voltage:

$$v = N \frac{d\Phi}{dt} = \frac{d\lambda}{dt}$$
$$\lambda = "flux linkage" = N\Phi$$

Inductance relates flux linkage to current

$$L = \frac{\lambda}{I}$$

Inductor with Airgap

• Units of inductance are Henrys, or Weber-turns per Ampere

Magnetic Circuit with Two Airgaps

© M. T. Thompson, 2009

Magnetic Circuit with Two Airgaps

© M. T. Thompson, 2009
Inductance vs. Relative Permeability

Inductance and Energy

• Magnetic stored energy (Joules) is:

$$W = \frac{1}{2}LI^2$$

Magnetic Circuit with Two Windings

• Note that flux is the sum of flux due to i_1 and that due to i_2

Magnetic Circuit with Two Windings

$$\frac{F_{LUX}}{\phi} = (N, I_1 + N_2 I_2) \frac{\mu_0 A_c}{g}$$

$$\frac{F_{LUX} + INKAGE FOR COIL \# I}{\lambda_1 = N_1 \phi} = N_1^2 I_1 \frac{\mu_0 A_c}{g} + N_1 N_2 I_2 \frac{\mu_0 A_c}{g}$$

$$\frac{WE - CAN WRITE THIS AS:}{\lambda_1 = L_1 I_1 + L_1 J_2 I_2}$$

$$L_1 = "SELF INDUCTANCE" OF COIL \# I$$

$$L_{12} = "MUTUAL INDUCTANCE" BETWEEN COILS \# I AND \# 2$$

© M. T. Thompson, 2009

Magnetic Circuit with Two Windings

$$\frac{FLUX \ LINKAGE \ FOR \ COIL \ \#2}{\lambda_2} = N_2 \ = N_1 N_2 \ I_1 \ \frac{M_0 A_c}{g} + N_2^2 \ I_2 \ \frac{M_0 A_c}{g}$$

$$\lambda_2 = L_{21} \ I_1 \ + L_{22} \ I_2$$

$$\begin{bmatrix} \lambda_{i} \\ \lambda_{2} \end{bmatrix} = \begin{bmatrix} L_{1i} & L_{12} \\ L_{2i} & L_{22} \end{bmatrix} \begin{bmatrix} I_{i} \\ I_{2} \end{bmatrix}$$
* INDUCATIONCE

MATRIX

B-H Curve and Saturation

• Definition of magnetic permeability: slope of B-H curve

Figure 3-12 Relation between *B*- and *H*-fields.

B-H Loop for M-5 Grain-Oriented Steel

• Only the top half of the loops shown for steel 0.012" thick

© M. T. Thompson, 2009

Thermal Modeling

DC Magnetization Curve for M-5

Thermal Modeling

BH Curves for Various Soft Magnetic Materials

FIGURE 1.27 The *B*-*H* curves of various soft magnetic materials.

Reference: E. Furlani, *Permanent Magnet and Electromechanical Devices*, Academic Press, 2001, pp. 41

© M. T. Thompson, 2009

Relationship Between Voltage, Flux and Current

Exciting RMS VA per kg at 60 Hz

Hysteresis Loop

• Hysteresis loss (Watts) is proportional to shaded area

Hysteresis Loop Size Increases with Frequency

• Hysteresis loss increases as frequency increases

Fig. 2.3 Hysteresis loops at different frequencies

Reference: Siemens, <u>Soft Magnetic Materials</u> (Vacuumschmelze Handbook), pp. 30

Total Core Loss

• Core loss (Watts/kg) in M-5 steel at 60 Hz vs. Bmax

Total Core Loss vs. Frequency and Bmax

- Core loss depends on peak flux density and excitation frequency
- High frequency core material

Reference: http://www.jfe-steel.co.jp/en/products/electrical/jnhf/02.html

Example 3: Core Calculations

- Find maximum B
- From this B and switching frequency, find core loss per kg
- Total loss is power density x mass of core

Example 3: Find V, I and Core Loss

Figure 1.15 Laminated steel core with winding for Example 1.8.

© M. T. Thompson, 2009

Example 3: Excitation Voltage

(a) From Faraday's law:

$$e = d\lambda = N \frac{d\phi}{dt} = NA_{d} \frac{dB_{c}}{dt}$$

$$A_{c} = 2in \times 2in \times 0.94 = 2.42 \times 10^{-3} \text{ m}^{2}$$

$$\frac{dB_{c}}{dt} = 1.5 \text{ w cos wt} = (1.5)(2\pi \times 60) \text{ cos wt}$$

$$= (1.5)(377) \text{ con wt}$$

$$= 565 \text{ cos wt}$$

$$e = (200)(2.43 \times 10^{-3} \text{ m}^{2})(565 \text{ con wt})$$

$$\frac{1}{1000} = 274 \text{ cos wt}$$

© M. T. Thompson, 2009

Example 3: Peak Current in Winding

(b) Peak current
- From Fig 1.10,
$$B = 1.5T$$
 requires $H = 36 \text{ AT/m}$
- From Ampere's law $Hl_c = NI$
 $I = 2 \times (8'' + 6'') = 28'' = 0.71 \text{ m}$
 $I = \frac{Hl_c}{N} = \frac{(36)(0.71)}{200} = 0.13\text{ A}$

© M. T. Thompson, 2009

Example 3: RMS Winding Current

Figure 1.12 Exciting rms voltamperes per kilogram at 60 Hz for M-5 grain-oriented electrical steel 0.012 in thick. (Armco Inc.)

() RMs winding current
From Fig 1.12, at B_{max} = 1.5T, P_a = 1.5 VA/kg
Core volume
$$V_c = (4m^2)(28in)(0.94) = 105 \ln^3 (\frac{2.54}{100})^3$$

 $V_c = 1.72 \times 10^{-3} m^3$
Core mass $M_c = V_c \rho_c = (1.72 \times 10^{-3} m^3)(\frac{7650 kg}{m^3})$
 $M_c = 13.2 kg$
 $P_c = 1.5 VA/Kg \times 13.2 kg = 19.7 V - A$
 $I_{RMS} = \frac{P_c}{E_{RMS}} = \frac{19.7}{274/V_2} = [0.10 A]$

Example 3: Core Loss

Figure 1.14 Core loss at 60 Hz in watts per kliogram for M-5 grain-oriented electrical steel 0.012 in thick. (Armco Inc.)

$$\frac{(d) \text{ Core } loss}{\text{From Fig 1.14, core } loss \text{ density} \approx 1.5 \text{ W/kg}}$$

$$at \quad B_{max} = 1.5 \text{ Tesla, Total core } loss is$$

$$l_c = M_c \times 1.5 \text{ W/kg} = (13.2)(1.5) = [20 \text{ Watts}]$$

© M. T. Thompson, 2009

Concept of Magnetic Reluctance

• Flux is related to ampere-turns by reluctance

Figure 3-14 Magnetic reluctance.

Analogy between Electrical and Magnetic Worlds

Magnetic Circuit	Electric Circuit
mmf Ni	V
Flux o	i
reluctance R	R
permeability µ	$1/\rho$, where ρ = resistivity

 Table 3-2
 Electrical-Magnetic Analogy

Analogy between Equations in Electrical and Magnetic Circuits

 Table 3-3
 Magnetic – Electrical Circuit Equation Analogy

Magnetic	Electrical (dc)
$\frac{Ni}{\Phi} = \Re = \frac{l}{\mu A}$	Ohm's law: $\frac{v}{i} = R = \frac{l}{A/\rho}$
$\oint \sum_{k} \Re_{k} = \sum_{m} N_{m} i_{m}$	Kirchhoff's voltage law: $i \sum_{k} R_{k} = \sum_{m} v_{m}$
$\Sigma \phi_k = 0$	Kirchhoff's current law: $\sum_{k} i_{k} = 0$

Magnetic Circuit and its Electrical Analog

(**a**)

Figure 3-15 (a) Magnetic circuit. (b) An electrical analog.

Faraday's Law and Lenz's Law

Figure 3-16 (a) Flux direction and voltage polarity. (b) Lenz's law.

Inductance L

• Inductance relates flux-linkage λ to current I

Figure 3-17 Self-inductance *L*.

Analysis of a Transformer

Figure 3-18 (a) Cross section of a transformer. (b) The B-H characteristics of the core.

Transformer Equivalent Circuit R_2 L_{l2} R_1 L_{l1} $i_1 - i_m$ i_2 11 + L_m N_1 N_2 **e**₁ e₂ v2 v_1 im Ideal 0 transformer (a) i_1 *i*2 + + N_2 N_1 e_1 **v**₁ e2 v2 **(b)**

Figure 3-19 Equivalent circuit for (a) a physically realizable transformer wound on a lossless core and (b) an ideal transformer.

Including the Core Losses

Figure 3-21 Equivalent circuit of a transformer including the effects of hysteresis loss. (a) Circuit components are on both sides (coil 1 and coil 2 sides) of the ideal transformer. (b) Components from the secondary (coil 2) side are reflected across the ideal transformer to the primary (coil 1) side.

Transformer Core Characteristic

Magnetic Design Issues

- Ratings for inductors and transformers in power electronic circuits vary too much for commercial vendors to stock full range of standard parts.
- Instead only magnetic cores are available in a wide range of sizes, geometries, and materials as standard parts.
- Circuit designer must design the inductor/transformer for the particular application.
- Design consists of:

1.Selecting appropriate core material, geometry, and size

2.Selecting appropriate copper winding parameters: wire type, size, and number of turns.

Inductor Fundamentals

- As sumption s
 - No core losses or cop per winding losses
 - Linearized B-H curve for core with $\mu_{m} \gg \mu_{0}$ o
 - $I_m >> g and A >> g^2$
 - Magnetic circuit approximations (flux uniform over core cross-section, no fringing flux)
- Starting equations
 - $H_m I_m + H_g g = N I (Ampere 's Law)$
 - $B_m A = B_g A = \phi$ (Continuity of flux assuming no leakage flux)
 - $\mu_m H_m = B_m$ (line arized B-H curve); $\mu_0 H_g = B_g$
- Results

•
$$B_{s} > B_{m} = B_{g} = \frac{NI}{I_{m}/\mu_{m} + g/\mu_{0}} = \phi/A$$

• $LI = N\phi$; $L = \frac{AN^{2}}{I_{m}/\mu_{m} + g/\mu_{0}}$

© M. T. Thompson, 2009

Transformer Fundamentals

- Assumptions same as for inductor
- Starting equations
 - $H_1L_m = N_1I_1$; $H_2L_m = N_2I_2$ (Ampere 's Law)
 - $H_mL_m = (H_1 H_2)L_m = N_1I_1 N_2I_2$
 - $\mu_m H_m = B_m$ (linearized B-H curve)
 - $v_1 = N_1 \frac{d\phi_1}{dt}$; $v_2 = N_2 \frac{d\phi_2}{dt}$ (Faraday's Law)

• Net flux
$$\phi = \phi_1 - \phi_2 = \mu_m H_m A$$
$$= \frac{\mu_m A(N_1 I_1 - N_2 I_2)}{L_m}$$

- Results assuming $\mu_m \Rightarrow \infty$, i.e. ideal core or ideal transformer approximation.
 - $\frac{\phi}{\mu_m} = 0$ and thus $N_1 I_1 = N_2 I_2$

•
$$\frac{d(\phi_1 - \phi_2)}{dt} = 0 = \frac{v_1}{N_1} - \frac{v_2}{N_2}; \frac{v_1}{N_1} = \frac{v_2}{N_2}$$

© M. T. Thompson, 2009

I m= mean path length area of core = A 12 i 1 ٧ı N₁ N_2 ¢, Magnetic flux φ B B_s ΔB ► H ΔH linear region $\mu = \frac{\Delta B}{\Delta H} = \frac{B}{H}$

Cross-sectional

Scaling Issues

• Larger electrical ratings require larger current I and larger flux density B.

• Core loss (hysteresis, eddy currents) increase as B² (or greater)

• Winding (ohmic) loss increases as I² and increases at high frequencies (skin effect, proximity effect)

• To control component temperature, surface area of component and thus size of component must be increased to reject increased heat to ambient.

• At constant winding current density J and core flux density B, heat generation increases with volume V but surface area only increases as $V^{2/3}$.

- Maximum J and B must be reduced as electrical ratings increase.
- Flux density B must be $< B_s$
 - Higher electrical ratings larger total flux larger component size
 - Flux leakage, nonuniform flux distribution complicate design

Overview of the Magnetic Design Problem

- Challenge conversion of component operating specs in converter circuit into component design parameters.
- Goal simple, easy-to-use procedure that produces component design specs that result in an acceptable design having a minimum size, weight, and cost.
- Inductor electrical (e.g.converter circuit) specifications.
 - Inductance value L
- Inductor currents rated peak current I, rated rms current I_{rms} , and rated dc current (if any) I_{dc}
 - Operating frequency f.
- Allowable power dissipation in inductor or equivalently maximum surface temperature of the inductor T_s and maximum ambient temperature T_a .
- Transformer electrical (converter circuit) • specifications.
 - Rated rms primary voltage V_{pri}
 Rated rms primary current I_{pri}

 - Turns ratio N_{pri}/N_{sec} Operating frequency f
 - Allowable power dissipation in transformer or equivalently maximum temperatures T_s and T_a

- Design procedure outputs.
 - Core geometry and material.
 - Core size (A_{core}, A_w)
 - Number of turns in windings.
 - Conductor type and area A_{cu}.
 - Air gap size (if needed).
- Three impediments to a simple design procedure.
 - 1. Dependence of J_{rms} and B on core size.
- 2. How to chose a core from a wide range of materials and geometries.

3. How to design low loss windings at high operating frequencies.

• Detailed consideration of core losses, winding losses, high frequency effects (skin and proximity effects), heat transfer mechanisms design procedures. required for good
Magnetic Core Shapes and Sizes

• Magnetic cores available in a wide variety of sizes and shapes.

• Ferrite cores available as U, E, and I shapes as well as pot cores and toroids.

• Laminated (conducting) materials available in E, U, and I shapes as well as tape wound toroids and C-shapes.

• Open geometries such as E-core make for easier fabrication but more stray flux and hence potentially more severe EMI problems.

• Closed geometries such as pot cores make for more difficult fabrication but much less stray flux and hence EMI problems.

- Bobbin or coil former provided with most cores.
- Dimensions of core are optimized by the manufacturer so that for a given rating (i.e. stored magnetic energy for an inductor or V-I rating for a transformer), the volume or weight of the core plus winding is minimized or the total cost is minimized.
 - Larger ratings require larger cores and windings.

• Optimization requires experience and computerized optimization algorithm.

• Vendors usually are in much better position to do the optimization than the core user.

Double-E Core Example

Assembled core and winding

Core

Characteristic	Relative Size	Absolute Size for a = 1 cm
Core area Acore	1.5 a ²	1.5 cm ²
Winding area Aw	1.4 a ²	1.4 cm ²
Area product AP = AwAc	2.1 a ⁴	2.1 cm ⁴
Core volume Vcore	13.5 a ³	13.5 cm ³
Winding volume Vw	12.3a ³	12.3 cm ³
Total surface area of assembled core and winding	59.6 a²	59.6 cm ²

High Frequency Effects

- At DC, current flow in a wire spreads out uniformly across cross section of wire
- For high frequencies, skin effect and proximity effect affect current flow patterns
 - For an isolated wire at high frequency, current is concentrated on the surface of the wire in a thin layer approximately one "skin depth" thick
 - Proximity effect may be important if you have adjacent windings

Types of Core Materials

- Iron-based alloys
 - Various compositions
 - Fe-Si (few percent Si)
 - Fe-Cr-Mn
 - METGLASS (Fe-B, Fe-B-Si, plus many other compositions)
 - Important properties
 - Resistivity = (10 100) ρ_{Cu}
 - $B_s = 1 1.8 T (T = tesla = 10^4 Gauss)$
 - METGLASS materials available only as tapes of various widths and thickness.
 - Other iron alloys available as laminations of various shapes.
 - Powdered iron can be sintered into various core shapes. Powdered iron cores have larger effective resistivities.

- Ferrite cores
 - Various compositions iron oxides, Fe-Ni-Mn oxides
 - Important properties
 - Resistivity ρ very large (insulator) no ohmic losses and hence skin effect problems at high frequencies.
 - B_s = 0.3 T

Hysteresis Loss

• Area encompassed by hysteresis loop equals work done on material during one cycle of applied ac magnetic field. Area times frequency equals power dissipated per unit volume

- Typical waveforms of flux density, B(t) versus time, in an inductor
- Only B_{ac} contributes to hysteresis loss

Total Core Loss

- Eddy current loss plus hysteresis loss = core loss.
- Empirical equation P_{m,sp} = k f^a [B_{ac}]^d.
 f = frequency of applied field. B_{ac} = baseto-peak value of applied ac field. k, a, and d are constants which vary from material to material
 - $P_{m,sp} = 1.5 \times 10^{-6} \text{ f}^{1.3} [B_{ac}]^{2.5} \text{ mW/cm}^3$ for 3F3 ferrite. (f in kHz and B in mT)
 - $P_{m,sp} = 3.2x10^{-6} f^{1.8} [B_{ac}]^2 mW/cm^3$ METGLAS 2705M (f in kHz and B in mT)
 - Example: 3F3 ferrite with f = 100 kHz and B_{ac} = 100 mT, P_{m,sp} = 60 mW/cm³

• 3F3 core losses in graphical form.

Core Material Performance Factor

- Volt-amp (V-A) rating of transformers is proportional to f B_{ac}
- Core materials have different allowable values of B_{ac} at a specific frequency. B_{ac} limited by allowable

P_{m,sp}.

- Most desirable material is one with largest B_{ac}.
- Choosing best material aided by defining an empirical performance factor PF = f B_{ac} . Plots of PF versus frequency for a specified value of $P_{m,sp}$ permit rapid selection of best material for an application.
- Plot of PF versus frequency at $P_{m,sp} = 100 \text{ mW/cm}^3$ for several different ferrites shown below.
- For instance, 3F3 is best material in 40 kHz to 420 kHz range

Eddy Current Losses in Magnetic Cores

- AC magnetic fields generate eddy currents in conducting magnetic materials.
 - Eddy currents dissipate power.
 - Shield interior of material from magnetic field.

• $\frac{B_{i}(r)}{B_{0}} = \exp(\{r - a\}/\delta)$ • $\delta = skin depth = \sqrt{\frac{2}{\omega\mu\sigma}}$

- $\omega = 2\pi f$, f = frequency
- μ = magnetic permeability ; μ > for magnetic materials.
- σ = conductivity of material.
- Numerical example
 - $\sigma = 0.05 \sigma_{CU}$; $\mu = 10^{3} \mu_{O}$ f = 100 Hz
 - $\delta = 1 \text{ mm}$

Laminated Core

 Cores made from conductive magnetic materials must be made of many thin laminations. Lamination thickness < skin depth.

Eddy Current Loss in Lamination

- Flux φ(t) intercepted by current loop of area 2xw given by φ(t) = 2xw B(t)
- Voltage in current loop v(t) = 2xw dB(t)/dt
 = 2w xωBcos(ωt)
- Current loop resistance $r = \frac{2w \rho_{core}}{L dx}$; w >> d
- Instantaneous power dissipated in thin loop $\delta p(t) = \frac{[v(t)]^2}{r}$

Average power Pec dissipated in lamination

given by P_{ec} =
$$\langle \int \delta p(t) dV \rangle = \frac{w L d^3 \omega^2 B^2}{24 \rho_{core}}$$

P_{ec,sp} = $\frac{P_{ec}}{V} = \frac{w L d^3 \omega^2 B^2}{24 \rho_{core}} \frac{1}{dwL} = \frac{d^2 \omega^2 B^2}{24 \rho_{core}}$

Power Dissipation in Windings

- Average power per unit volume of copper dissipated in copper winding = $P_{cu,sp} = cu$ $(J_{rms})^2$ where $J_{rms} = I_{rms}/A_{cu}$ and cu =copper resistivity.
- Average power dissipated per unit volume of winding = $P_{W,SP} = k_{CU} \quad cu (J_{rms})^2$; $V_{CU} = k_{CU} V_W$ where V_{CU} = total volume of copper in the winding and V_W = total volume of the winding.
- Copper fill factor $k_{CU} = \frac{N A_{CU}}{A_W} < 1$
 - N = number of turns; A_{CU} = cross-sectional area of copper conductor from which winding is made; A_W = b_W l_W = area of winding window.
 - k_{CU} = 0.3 for Litz wire; k_{CU} = 0.6 for round conductors; k_{CU}. 0.7-0.8 for rectangular conductors.

- k_{cu} < 1 because:
 - Insulation on wire to avoid shorting out adjacent turns in winding.
 - Geometric restrictions. (e.g. tightpacked circles cannot cover 100% of a square area.)

Eddy Currents Increase Winding Loss

- AC currents in conductors generate ac magnetic fields which in turn generate eddy currents that cause a nonuniform current density in the conductor . Effective resistance of conductor increased over dc value.
 - $P_{w,sp} > k_{cu} \rho_{cu} (J_{rms})^2$ if conductor dimensions greater than a skin depth. J(r)
 - $\frac{J(r)}{J_0} = \exp(\{r a\}/\delta)$
 - $\delta = \text{skin depth} = \sqrt{\frac{2}{\omega\mu\sigma}}$
 - $\omega = 2\pi f$, f = frequency of ac current
 - $\mu =$ magnetic permeability of conductor; $\mu = \mu_0$ for nonmagnetic conductors.
 - σ = conductivity of conductor material.
- Numerical example using copper at 100 °C

Frequency	50	5	20	500
	Hz	kHz	kHz	kHz
Skin	10.6	1.06	0.53	0.106
Depth	mm	mm	mm	mm

- Mnimize eddy currents using Litz wire bundle. Each conductor in bundle has a diameter less than a skin depth.
- Twisting of paralleled wires causes effects of intercepted flux to be canceled out between adjacent twists of the conductors. Hence little if any eddy currents.

Proximity Effect Can Increase Winding Loss

 $\delta < d$ δ> d (b) (a) x . MMF x x 10 100 Eddy Current 30 Losses 3 10 3 х х

• Proximity effect - losses due to eddy current generated by the magnetic field experienced by a particular conductor section but generated by the current flowing in the rest of the winding.

• Design methods for minimizing proximity effect losses discussed later.

© M. T. Thompson, 2009

Thermal Modeling

Transformer Winding Loss --- AC Effects

$$\varphi = \sqrt{\eta} \sqrt{\frac{\pi}{4}} \frac{d}{\delta} \approx \frac{d}{\delta}$$

Fig. 13.34 Increased total winding copper loss in the two-winding transformer example, as a function of ϕ and number of layers M, for sinusoidal excitation.

© M. T. Thompson, 2009

Thermal Modeling

Minimum Winding Loss

- High frequencies require small conductor sizes minimize loss.
- P_{dc} kept small by putting may small-size conductors in parallel using Litz wire or thin but wide foil conductors.

Thermal Considerations

٠

- Losses (winding and core) raise core temperature. Common design practice to limit maximum interior temperature to 100-125 °C.
- Core losses (at constant flux density) increase with temperature above 100 °C
- Saturation flux density B_s decreases with temp.
- Nearby components such as power semi-conductor devices, integrated circuits, capacitors have similar limits.
- Temperature limitations in copper windings
- Copper resistivity increases with temperature increases. Losses, at constant current density increase with temperature.
- Reliability of insulating materials degrades with temperature increase.

- Surface temperature of component nearly equal to interior temperature. Minimal temperature gradient between interior and exterior surface.
- Power dissipated uniformly in component volume.
- Large cross-sectional area and short path lengths to surface of components.
- Core and winding materials have large thermal conductivity.

.• Thermal resistance (surface to ambient) of magnetic component determines its temperature.

$$P_{sp} = \frac{T_s - T_a}{R_{\theta sa}(V_w + V_c)} ; R_{\theta sa} = \frac{h}{A_s}$$

- $h = \text{convective heat transfer coefficient} = 10 \text{ °C-m}^2/\text{W}$
- A_s = surface area of inductor (core + winding). Estimate using core dimensions and s imple geometric considerations.
- Uncertain accuracy in h and other heat transfer parameters do not justify more accurate thermal modeling of inductor.

Core and Winding Scaling

- Power per unit volume, P_{sp} , dissipated in magnetic component is $P_{sp} = k_1/a$; $k_1 = \text{constant}$ and a = core scaling dimension.
- $P_{w,sp} V_w + P_{m,sp} V_m = \frac{T_s T_a}{R_{\theta sa}}$: T_a = ambient temperature and $R_{\theta sa}$ = surface-to-ambient thermal resistance of component.
- For optimal design $P_{w,sp} = P_{c,sp} = P_{sp}$: Hence $P_{sp} = \frac{T_s - T_a}{R_{\theta sa}(V_w + V_c)}$
- $R_{\theta sa}$ proportional to a^2 and $(V_w + V_c)$ proportional to a^3

•
$$J_{\text{rms}} = \sqrt{\frac{P_{\text{sp}}}{k_{\text{cu}}r_{\text{cu}}}} = k_2 \frac{1}{\sqrt{k_{\text{cu}}a}}$$
; $k_2 = \text{constant}$

•
$$P_{m,sp} = P_{sp} = k f^b [B_{ac}]^d$$
; Hence
 $B_{ac} = \sqrt[4]{\frac{P_{sp}}{kf^b}} = \frac{k_3}{\sqrt[4]{f^b}a}$ where k_3 = constant

• Plots of J_{rms} , B_{ac} , and P_{sp} versus core size (scale factor a) for a specific core material, geometry, frequency, and $T_s - T_a$ value very useful for picking appropriate core size and winding conductor size.

Causes of Skin Effect

- Self-field of wire causes current to crowd on the surface of the wire
- Method:
 - Current $i(t) \Rightarrow$ changing magnetic flux density $B(t) \Rightarrow$ reaction currents

Reference: http://ece-www.colorado.edu/~pwrelect/book/slides/Ch12slide.pdf

Effects of Skin Effect

- For high frequencies, current is concentrated in a layer approximately one skin depth δ thick
- Skin depth varies with frequency

$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}} = \sqrt{\frac{1}{\pi f\mu\sigma}}$$

- σ = electrical conductivity = 5.9×10⁷ Ω⁻¹ m⁻¹ for copper at 300K
- μ = magnetic permeability of material = $4\pi \times 10^{-7}$ H/m in free space

Skin depth in copper at 300K				
cond	5.90E+07			
mu	1.26E-06			
f	skin depth (meter)			
1	6.55E-02			
10	2.07E-02			
100	6.55E-03			
1000	2.07E-03			
1.00E+04	6.55E-04			
1.00E+05	2.07E-04			
1.00E+06	6.55E-05			

Skin Effect --- Increase in Wire Resistance

- For high frequencies, resistance of wire increases
- DC resistance of wire: $R_{DC} = \frac{l}{\sigma(\pi r_w^2)}$
- For frequencies above critical frequency where skin depth equals wire radius r_w: R(f)

$$R_{AC} = \frac{l}{\sigma(2\pi r_w \delta)} = R_{DC} \left(\frac{2\delta}{r_w}\right)$$
$$R_{DC} = \frac{1}{\pi r_w^2 \mu \sigma}$$

- Result: for high frequency operation, don't bother making wire radius > δ
 - Skin depth in copper at 60 Hz is approximately 8 mm

Proximity Effect

- In multiple-layer windings in inductors and transformers, the <u>proximity effect</u> can also greatly increase the winding resistance
- Field from one wire affects the current profile in another

CURRENTS IN OPPOSITE DIRECTION

CURRENTS IN SAME DIRECTION

Losses vs. Winding Layer Thickness

- There is an optimal wire diameter to minimize losses in your magnetics
- Optimal wire thickness is generally somewhat smaller than a skin depth
- If wire is thick, DC losses are low but skin and proximity losses are high
- If wire is skinny, DC losses are high but skin and proximity effects are minimized

Reference: http://ece-www.colorado.edu/~pwrelect/book/slides/Ch12slide.pdf

© M. T. Thompson, 2009

Thermal Modeling

References

- Vacuumschmelze, <u>Soft Magnetic Materials</u>, 1979
- Magnetic Materials Producers Association, "Soft Ferrites Guide," Standard SFG-98