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Introduction to Power ElectronicsIntroduction to Power Electronics
• Power electronics relates to the control and flow of 

electrical energyelectrical energy
• Control is done using electronic switches, capacitors, 

magnetics, and control systems
S f l t i illiW tt i W tt• Scope of power electronics: milliWatts ⇒ gigaWatts

• Power electronics is a growing field due to the 
improvement in switching technologies and the need for 
more and more efficient switching circuits
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SummarySummary
• History/scope of power electronics
• Some interesting PE-related projectsSome interesting PE related projects
• Circuit concepts important to power electronics
• Some tools for approximate analysis of power 

l t i telectronics systems
• DC/DC converters --- first-cut analysis
• Key design challenges in DC/DC converter design
• Basic system concepts
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Scope of Power ElectronicsScope of Power Electronics
Power Level (Watts) System 
0.1-10 • Battery-operated equipment 

• Flashes/strobes• Flashes/strobes 
10-100 • Satellite power systems 

• Typical offline flyback supply 
100 – 1kW • Computer power supply 

• Blender 
1 – 10 kW • Hot tub 
10 – 100 kW • Electric car 

• Eddy current braking• Eddy current braking
100 kW –1 MW • Bus 

• micro-SMES 
1 MW – 10 MW • SMES
10 MW – 100 MW • Magnetic aircraft launch 

• Big locomotives 
100 MW – 1 GW • Power plant 
> 1 GW  S d P d b t ti (2 2 GW)
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> 1 GW • Sandy Pond substation (2.2 GW)
 



Scope of Power ElectronicsScope of Power Electronics
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Areas of Application of Power ElectronicsAreas of Application of Power Electronics
• High frequency power 

conversion
• Power Transmission

– HVDC
– DC/DC, inverters

• Low frequency power 
conversion

– HVAC
• Power quality

– Power factorconversion
– Line rectifiers

• Distributed power 

– Power factor 
correction

– Harmonic reduction
P i filt i

p
systems

• Power devices
• Passive filtering
• Active filtering
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Some ApplicationsSome Applications
• Heating and lighting control
• Induction heating

• Uninterruptible power 
supplies (UPS)

• Fluorescent lamp ballasts
– Passive
– Active

• Electric power transmission
• Automotive electronics

– Electronic ignitions

• Motor drives
• Battery chargers
• Electric vehicles

– Alternators
• Energy storage

– Flywheels• Electric vehicles
– Motors
– Regenerative braking

Switching power supplies

y
– Capacitors
– SMES 

• Power conditioning for• Switching power supplies
• Spacecraft power systems

– Battery powered

Power conditioning for 
alternative power sources
– Solar cells
– Fuel cells
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– Flywheel powered
Fuel cells

– Wind turbines



Some Power Electronics-Related Projects Worked 
on at TCI (Harvard Labs)

• High speed lens actuator
• Laser diode pulsers
• Levitated flywheel
• MaglevMaglev
• Permanent magnet brakes
• Switching power supplies
• Magnetic analysis• Magnetic analysis
• Laser driver pulsers
• 50 kW inverter switch
• Transcutaneous (through-skin) non-contact power supply
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High Power Laser Diode Driver Based on Power 
Converter Technology
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See:
1. B. Santarelli and M. Thompson, U.S. Patent #5,123,023, "Laser Driver with Plural Feedback Loops," issued June 16, 1992
2. M. Thompson, U.S. Patent #5,444,728, "Laser Driver Circuit," issued August 22, 1995
3. W. T. Plummer, M. Thompson, D. S. Goodman and P. P. Clark, U.S. Patent #6,061,372,  “Two-Level Semiconductor Laser 
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Driver,” issued May 9, 2000 
4. Marc T. Thompson and Martin F. Schlecht, “Laser Diode Driver Based on Power Converter Technology,” IEEE 

Transactions on Power Electronics, vol. 12, no. 1, Jan. 1997, pp. 46-52



Magnetically-Levitated Flywheel Energy StorageMagnetically Levitated Flywheel Energy Storage
• For NASA; P = 100W, energy storage = 100 W-hrs

Guidance and Suspension
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Electromagnetic Suspension --- MaglevElectromagnetic Suspension --- Maglev
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Maglev - German TransrapidMaglev - German Transrapid
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Maglev - Japanese EDS
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Japanese EDS GuidewayJapanese EDS Guideway
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MIT Maglev Suspension MagnetMIT Maglev Suspension Magnet 

Reference:  M. T. Thompson, R. D. Thornton and A. Kondoleon, “Flux-canceling electrodynamic maglev 
suspension: Part I Test fixture design and modeling ” IEEE Transactions on Magnetics vol 35 no 3 May 1999
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suspension: Part I. Test fixture design and modeling,  IEEE Transactions on Magnetics, vol. 35, no. 3, May 1999 
pp. 1956-1963



MIT Maglev Test FixtureMIT Maglev Test Fixture

M. T. Thompson, R. D. Thornton and A. Kondoleon, 
“Flux canceling electrodynamic maglev suspension:Flux-canceling electrodynamic maglev suspension: 
Part I. Test fixture design and modeling,” IEEE 
Transactions on Magnetics, vol. 35, no. 3, May 1999 pp. 
1956-1963
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MIT Maglev Test FixtureMIT Maglev Test Fixture
• 2 meter diameter 

test wheeltest wheel
• Max. speed 1000 

RPM (84 m/s)
F t ti “fl• For testing “flux 
canceling” HTSC 
Maglev

• Sidewall levitation

“ f
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Permanent Magnet BrakesPermanent Magnet Brakes
• For roller coasters
• Braking force > 10 000Braking force > 10,000 

Newtons per meter of brake
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Reference:  http://www.magnetarcorp.com



Halbach Permanent Magnet ArrayHalbach Permanent Magnet Array 
• Special PM arrangement allows strong side (bottom) 

and weak side (top) fieldsand weak side (top) fields
• Applicable to magnetic suspensions (Maglev), linear 

motors, and induction brakes
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Halbach Permanent Magnet ArrayHalbach Permanent Magnet Array 
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Linear Motor Design and AnalysisLinear Motor Design and Analysis
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Variac Failure AnalysisVariac Failure Analysis 
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PhotovoltaicsPhotovoltaics

Introduction to Power Electronics© M. T. Thompson, 2009 24

Reference:  S. Druyea, S. Islam and W. Lawrance, “A battery management system for stand-alone photovoltaic energy 
systems,” IEEE Industry Applications Magazine, vol. 7, no. 3, May-June 2001, pp. 67-72



Offline Flyback Power SupplyOffline Flyback Power Supply

Reference: P Maige “A universal power supply integrated circuit for TV and monitor applications ” IEEE Transactions
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Reference:  P. Maige, A universal power supply integrated circuit for TV and monitor applications,   IEEE Transactions 
on Consumer Electronics, vol. 36, no. 1, Feb. 1990, pp. 10-17



Transcutaneous Energy Transmissiongy

Reference: H Matsuki Y Yamakata N Chubachi S -I Nitta and H Hashimoto “Transcutaneous DC-DC
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Reference:  H. Matsuki, Y. Yamakata, N. Chubachi, S.-I. Nitta and H. Hashimoto, Transcutaneous DC-DC 
converter for totally implantable artificial heart using synchronous rectifier,” IEEE Transactions on Magnetics, 
vol. 32 , no. 5, Sept. 1996, pp. 5118 - 5120 



50 kW Inverter Switch
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Non-Contact Battery ChargerNon-Contact Battery Charger
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High Voltage RF Supply
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60 Hz Transformer Shielding Study60 Hz Transformer Shielding Study
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“Intuitive Analog Circuit Design”
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“Power Quality in Electrical Systems”
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Some Other Interesting Power Electronics Related 
Systems
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Conventional vs Electric CarConventional vs. Electric Car
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High Voltage DC (HVDC) TransmissionHigh Voltage DC (HVDC) Transmission
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Mass Spectrometer
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Reference:  http://www.cameca.fr/doc_en_pdf/oral_sims14_schuhmacher_ims1270improvements.pdf



Some Disciplines Encompassed in the Field of 
Power Electronics

• Analog circuits
High speed (MOSFET

• Machines/motors
Simulation– High speed (MOSFET 

switching, etc.)
– High power

PC b d l t

• Simulation 
– SPICE, Matlab, etc.

• Device physics
H t k b tt– PC board layout

– Filters
• EMI

C l h

– How to make a better 
MOSFET, IGBT, etc.

• Thermal/cooling
H d i h• Control theory

• Magnetics
– Inductor design

– How to design a heat 
sink

– Thermal interfaces
– Transformer design

• Power systems
– Transmission lines

– Thermal modeling

Introduction to Power Electronics© M. T. Thompson, 2009 37

– Line filtering



Selected History of Power Switching DevicesSelected History of Power Switching Devices

• 1831 --- Transformer action 
demonstrated by Michael Faradaydemonstrated by Michael Faraday

• 1880s: modern transformer invented

f C “ f ( ”
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Reference: J. W. Coltman, “The Transformer (historical overview,” IEEE 
Industry Applications Magazine, vol. 8, no. 1, Jan.-Feb. 2002, pp. 8-15



Selected History of Power Switching Devices
• Early 1900s: vacuum tube

– Lee DeForest --- triode, 1906
1920 1940 t b t

y g

• 1920-1940: mercury arc tubes to 
convert 50Hz, 2000V to 
3000VDC for railway

Reference: M. C. Duffy, “The mercury-arc rectifier and supply 
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to electric railways,”  IEEE Engineering Science and 
Education Journal, vol. 4, no. 4, August 1995, pp. 183-192



Selected History of Power Switching DevicesSelected History of Power Switching Devices

• 1930s: selenium rectifiers
• 1948 Silicon Transistor• 1948 - Silicon Transistor 

(BJT) introduced (Bell Labs)
• 1950s - semiconductor power 

diodes begin replacing 
vacuum tubes

• 1956 - GE introduces Silicon-
Controlled Rectifier (SCR)

f “ S S C f ( ) ”
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Reference: N. Holonyak, Jr., “The Silicon p-n-p-n Switch and Controlled Rectifier (Thyristor),”  IEEE Transactions on 
Power Electronics, vol. 16, no. 1, January 2001, pp. 8-16



Selected History of Power Switching Devices
• 1960s - switching speed of BJTs allow DC/DC converters 

possible in 10-20 kHz range
• 1960 - Metal Oxide Semiconductor Field-Effect Transistor1960 Metal Oxide Semiconductor Field Effect Transistor 

(MOSFET) for integrated circuits
• 1976 - power MOSFET becomes commercially available, 

allows > 100 kHz operationallows > 100 kHz operation
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Reference: B. J. Baliga, “Trends in Power Semiconductor Devices,”  IEEE Transactions on Electron Devices, vol. 43, 
no. 10, October 1996, pp. 1717-1731



Selected History of Power Switching Devices
• 1982 - Insulated Gate Bipolar Transistor (IGBT) introduced
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Reference: B. J. Baliga, “Trends in Power Semiconductor Devices,”  IEEE Transactions on Electron Devices, vol. 43, 
no. 10, October 1996, pp. 1717-1731



Review of Basic Circuit Concepts
• Some background in circuits• Some background in circuits 

• Laplace notation
• First-order and second-
order systems
• Resonant circuits, 
damping ratio, Qp g , Q

• Reference for this material: M. 
T. Thompson, Intuitive Analog 
Circuit Design Elsevier 2006Circuit Design, Elsevier, 2006 
(course book for ECE529) and 
Power Quality in Electrical 
Systems, McGraw-Hill, 2007 by 
A. Kusko and M. Thompson
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Laplace Notationp
• Basic idea: Laplace transform converts differential 

equation to algebraic equation
G ll th d i d i i id l t d t t• Generally, method is used in sinusoidal steady state 
after all startup transients have died out

 
Circuit domain Laplace (s) domain 
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System Function
• Find “transfer function” H(s) by solving Laplace transformed 

circuit
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First-Order Systems
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First-Order Step and Frequency Responsep q y p
de

Step Response
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Review of Second-Order SystemsReview of Second-Order Systems
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Second-Order System Frequency Response
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Second-Order System Frequency ResponseSecond Order System Frequency Response
• Plots show varying damping ratio

Frequency response for natural frequency = 1 and various damping ratios
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Second-Order System Frequency Response at 
Natural Frequency

• Now, what happens if we excite this system exactly at the 
t l f ? Th inatural frequency, or ω = ωn?  The response is: 

1
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Relationship Between Damping Ratio and “Quality 
Factor” Q

• A second order system can also be characterized by its 
“Q lit F t ” “Q”“Quality Factor” or “Q”

1 QsH
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==
= ςωω 2

1)(
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Second-Order System Step Response
• Shown for varying values of damping ratio 

Step Response

2
Step response for natural frequency = 1 and various damping ratios
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Second-Order Mechanical System
• Electromechanical modeling
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Reference:  Leo Beranek, Acoustics, Acoustical Society of America, 1954



Pole Location Variation with Damping

Very underdamped

ωj

j

Critically 
damped Overdamped
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Undamped Resonant Circuit

+

iL

-
vc C L

Now we can find the resonant frequency by guessing that the voltage v(t) isNow, we can find the resonant frequency by guessing that the voltage v(t) is 
sinusoidal with v(t) = Vosinωt.  Putting this into the equation for capacitor voltage 
results in: 
 

1 )sin(1)sin(2 t
LC

t ωωω −=−  

 
This means that the resonant frequency is the standard (as expected) resonance:This means that the resonant frequency is the standard (as expected) resonance:
 

LCr
12 =ω  
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Energy MethodsEnergy Methods

+

iL

-
vc C L

By using energy methods we can find the ratio of maximum 
capacitor voltage to maximum inductor current.  Assuming that the 

it i i iti ll h d t V lt d b i th tcapacitor is initially charged to Vo volts, and remembering that 
capacitor stored energy Ec = ½CV2 and inductor stored energy is 
EL = ½LI2, we can write the following: 
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Energy Methods

+

iL

-
vc C L

What does this mean about the magnitude of the inductor current ?  Well, 
we can solve for the ratio of Vo/Io resulting in: 
 

LV
o

o

o Z
C
L

I
V

≡=  

 
The term “Zo” is defined as the characteristic impedance of a resonantThe term Zo  is defined as the characteristic impedance of a resonant 
circuit.  Let’s assume that we have an inductor-capacitor circuit with C = 1 
microFarad and L = 1 microHenry.  This means that the resonant frequency 
is 106 radians/second (or 166.7 kHz) and that the characteristic impedance 
i 1 Oh
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Simulation

+
v C L

iL

-
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Typical Resonant Circuit
• Model of a MOSFET gate drive circuit• Model of a MOSFET gate drive circuit
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Resonant Circuit --- Underdamped
With “ ll” i t i it i d d d• With “small” resistor, circuit is underdamped

1

8.31

sec/2001
==

n

n

MHzf

Mrad
LC

ω

5Ω==o

n

C
LZ

f

001.0
2
1

2
1

2
====

o

n

Z
R

C
L

RRCω
ς

Introduction to Power Electronics© M. T. Thompson, 2009 61

C



Resonant Circuit --- Underdamped Resultsp
• This circuit is very underdamped, so we expect step 
response to oscillate at around 31.8 MHz

E t k f ith k 31 8 MH
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• Expect peaky frequency response with peak near 31.8 MHz
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Resonant Circuit --- Underdamped Results, Step p , p
Response

• Rings at around 31.8 MHz
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Resonant Circuit --- Underdamped Results, p ,
Frequency Response

• Frequency response peaks at 31.8 MHz
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Resonant Circuit --- Critical Dampingp g

• Now, let’s employ “critical damping” by increasing value 
of resistor to 10 Ohms
• This is also a typical MOSFET gate drive damping 
resistor value
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Critical Damping, Step Responsep g, p p

• Note that response is still relatively fast (< 100 ns 
response time) but with no overshootp )
• If we make R larger, the risetime slows down
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Critical Damping, Frequency Responsep g, q y p

• No overshoot in the transient response corresponds to 
no peaking in the frequency responsep g q y p
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Circuit ConceptsCircuit Concepts
• Power

– Reactive powerReactive power
– Power quality
– Power factor

R t M S (RMS)• Root Mean Square (RMS)
• Harmonics

– Harmonic distortion
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SinewavesSinewaves

• A sinewave can be 200
120V RMS 60 Hz sinewave

expressed as v(t) = 
Vpksin(ωt)
• Vpk = peak voltage 50

100

150

Vpk  peak voltage
• ω = radian frequency  
(rad/sec)

= 2 f where f is in Hz
-50

0

50

• ω = 2πf where f is in Hz
• VRMS = Vpk/sqrt(2) = 
120V for sinewave with 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

-200

-150

-100

Time[sec]

peaks at ±170V
• More on RMS later

Time [sec.]
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Sinewave with Resistive Load
• v(t) and i(t) are in phase and have the same shape; 
i.e. no harmonics in current

Time representation Ph t ti- Time representation -Phasor representation
-In this case, V and I 
have the same phasep
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Sinewave with Inductive Load
• For an inductor, remember that v = Ldi/dt 
• So, i(t) lags v(t) by 90o in an inductor
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Sinewave with Inductive Load --- PSIMSinewave with Inductive Load --- PSIM 
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Sinewave with L/R Load
• Phase shift (also called angle) between v and i is somewhere 
between 0o and -90o
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Sinewave with Capacitive Load
• Remember that i = Cdv/dt for a capacitor 
• Current leads voltage by +90o

- Phasor representation
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Phasor Representation of L and C

In inductor, current lags
voltage by 90 degrees

In capacitor, voltage lags
current by 90 degrees
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g y g current by 90 degrees



Response of L and C to Pulses
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Review of Complex Numbers
• In “rectangular” form, a complex number is written in terms of 
real and imaginary components
• A = Re(A) + j×Im(A)A  Re(A)  j×Im(A)

- Angle

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

)Re(
)Im(tan 1

A
Aθ

( ) ( )22 )()(

- Magnitude of A

( ) ( )22 )Im()Re( AAA +=
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Find Polar Form
• Assume that current I = 3 5 + j(4 2)• Assume that current I = -3.5 + j(4.2)

AI 5.5)2.4()5.3( 22 =+−=

o

o

2502.4tan

180

1 =⎟
⎞

⎜
⎛=

−=

−γ

γθ

ooo 8.1292.50180

2.50
5.3

tan

=−=

=⎟
⎠

⎜
⎝

=

θ

γ
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Converting from Polar to Rectangular Form

{ } )cos(Re θAA{ }
{ } )sin(Im

)cos(Re

θ

θ

AA

AA

=

=
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PowerPower
• “Power” has many shapes and forms

– Real powerp
– Reactive power

• Reactive power does not do real work
– Instantaneous power– Instantaneous power

P k i t t

)()()( titvtp =
– Peak instantaneous power
– Average power

T1 dttitv
T

tp
T

)()(1)(
0
∫=
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Power FactorPower Factor
• Ratio of delivered power to the product of RMS voltage and 

RMS current
P ><

RMSRMS IV
PPF ><

=

• Power factor always <= 1
• With pure sine wave and resistive load, PF = 1
• With pure sine wave and purely reactive load, PF = 0p p y ,
• Whenever PF < 1 the circuit carries currents or voltages 

that do not perform useful work
• The more “spikey” a waveform is the worse is its PF• The more spikey  a waveform is the worse is its PF

– Diode rectifiers have poor power factor
• Power factor can be helped by “power factor correction”
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Causes of Low Power Factor--- L/R LoadCauses of Low Power Factor--- L/R Load

• Power angle is θ = tan-1(ωL/R)
• For L = 1H R = 377 Ohms θ = 45o and PF = cos(45o) =• For L = 1H, R = 377 Ohms, θ = 45o and PF = cos(45o) = 

0.707
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Causes of Low Power Factor --- Non-linear Load
• Nonlinear loads include:

• Variable-speed drives 
• Frequency converters• Frequency converters 
• Uninterruptable power 

supplies (UPS) 
• Saturated magnetic 

circuits 
• Dimmer switches 
• Televisions 
• Fluorescent lamps 
• Welding sets• Welding sets 
• Arc furnaces 
• Semiconductors  

B tt h
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Half Wave Rectifier with RC Load
• In applications where cost is a major consideration, a 
capacitive filter may be used.
• If RC >> 1/f then this operates like a peak detector and theIf RC  1/f then this operates like a peak detector and the 
output voltage <vout> is approximately the peak of the input 
voltage

Diode is only ON for a short time near the sinewave peaks• Diode is only ON for a short time near the sinewave peaks
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Half Wave Rectifier with RC Load
• Note poor power factor due to peaky input line current
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Unity Power Factor --- Resistive LoadUnity Power Factor --- Resistive Load
• Example: purely resistive load

– Voltage and currents in phase
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=

=

t
R
Vti

tVtv

ω

ω

2
)(

sin)()()(

2

2
2

>=<

==

R
Vtp

t
R

Vtitvtp ω

2

2

=

=

R
VI

VV

RMS

RMS

12)(

2
2

=
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=
><

=
VV

R
V

IV
tpPF

R

RMSRMS

Introduction to Power Electronics© M. T. Thompson, 2009 86

22
⎟
⎠

⎜
⎝

⎟
⎠

⎜
⎝ R



Causes of Low Power Factor --- Reactive Load
• Example: purely inductive load

– Voltage and currents 90o out of phase
sin)( tVtv ω

cos)(

sin)(

=

=

t
L

Vti

tVtv

ω
ω

ω

0)(

cossin)()()(
2

>=<

==

tp

tt
L

Vtitvtp ωω
ω

0)( >< tp

• For purely reactive 
load PF 0load, PF=0
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Why is Power Factor Important?
• Consider peak-detector full-wave rectifier

• Typical power factor kp = 0.6
• What is maximum power you can deliver to load ?• What is maximum power you can deliver to load ?

– VAC x current x kp x rectifier efficiency
– (120)(15)(0.6)(0.98) = 1058 Watts

• Assume you replace this simple rectifier by power 
electronics module with 99% power factor and 93% 
efficiency: 
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Power Factor Correction
• Typical toaster can draw 1400W from a 120VAC/15A line
• Typical offline switching converter can draw <1000W 

because it has poor power factorbecause it has poor power factor
• High power factor results in:

– Reduced electric utility bills 
– Increased system capacity 
– Improved voltage 
– Reduced heat losses

• Methods of power factor correction
– Passive

• Add capacitors across an inductive load to resonate• Add capacitors across an inductive load to resonate
• Add inductance in a capacitor circuit

– Active
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Power Factor Correction --- PassivePower Factor Correction Passive
• Switch capacitors in and out as needed as load changes
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Power Factor Correction --- ActivePower Factor Correction --- Active
• Fluorescent lamp ballast application
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Root Mean Square (RMS)
• Used for description of periodic, often multi-harmonic, 

waveforms
• Square root of the average over a cycle (mean) of theSquare root of the average over a cycle (mean) of the 

square of a waveform
∫=
T

RMS dtti
T

I
0

2 )(1

0

• RMS current of any waveshape will dissipate the same 
amount of heat in a resistor as a DC current of the same 
valuevalue
– DC waveform: Vrms = VDC
– Symmetrical square wave:

• IRMS = Ipk
– Pure sine wave

• IRMS=0.707Ipk
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• Example: 120 VRMS line voltage has peaks of ±169.7 V



Intuitive Description of RMS
• The RMS value of 

a sinusoidal or 
other periodic 
waveform 
dissipates the 
same amount of 
power in a resistive 
load as does a 
battery of the same y
RMS value

• So, 120VRMS into 
a resistive loada resistive load 
dissipates as much 
power in the load 
as does a 120V
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RMS Value of Various Waveforms
• Following are a bunch of waveforms typically found in power 
electronics, power systems, and motors, and their 
corresponding RMS valuescorresponding RMS values
• Reference:  R. W. Erickson and D. Maksimovic, 
Fundamentals of Power Electronics, 2nd edition, Kluwer, 2001
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DC Current

• Battery
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Sinewave

• AC line

Introduction to Power Electronics© M. T. Thompson, 2009 96



Square Wave

• This type of waveform can be put out by a square wave 
converter or full-bridge converter
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DC with Ripple

• Buck converter inductor current (DC value + ripple)
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Triangular Ripple

• Capacitor ripple current in some converters (no DC value)
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Pulsating Waveform
B k t i t it h t ( i ll i l )• Buck converter input switch current (assuming small ripple)

Introduction to Power Electronics© M. T. Thompson, 2009 100



Pulsating with Ripple

• i.e. buck 
converter switch 
currentcurrent
• We can use 
this result to get 
RMS value of 
buck diode 
current
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Triangular

Introduction to Power Electronics© M. T. Thompson, 2009 102



Piecewise Calculation

• This works if the different components are at different 
frequencies
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Piecewise Calculation --- Example
Wh t i RMS l f DC i l ( h b f )?• What is RMS value of DC + ripple (shown before)?
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HarmonicsHarmonics
• Harmonics are created by nonlinear circuits

– Rectifiers
• Half-wave rectifier has first harmonic at 60 Hz
• Full-wave has first harmonic at 120 Hz

– Switching DC/DC converters– Switching DC/DC converters
• DC/DC operating at 100 kHz generally creates 

harmonics at DC, 100 kHz, 200 kHz, 300 kHz, etc.
Li h i b t t d b li filt• Line harmonics can be treated by line filters
– Passive
– Active
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Total Harmonic Distortion
• Total harmonic distortion (THD)

– Ratio of the RMS value of all the nonfundamental 
frequency terms to the RMS value of thefrequency terms to the RMS value of the 
fundamental

2

2
,1

2
1

2
,

RMSRMSn
RMSn

I
II

I

I
THD

−
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∑
≠
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• Symmetrical square wave: THD = 48.3%
1=I RMS
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Half-Wave Rectifier, Resistive Load
• Simplest, cheapest rectifier
• Line current has DC component; this current appears in 
neutralneutral 
• High harmonic content, Power factor = 0.7

avgP
FP =

RMSRMS IV
FP =..
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Half Wave Rectifier with Resistive Load --- Power 
Factor and Average Output VoltageFactor and Average Output Voltage

[ ] πωπ pktpk VV
d =∫ )()()i (1

Average output voltage:

1 22
⎞⎛ II

[ ]
π

ω
π

ωω
π

πω
ω

pkt
t

pk
pkd ttdtVv =−=>=< =

=∫ 00
)cos(

2
)()sin(

2
1

Power factor calculation:
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Half-Wave Rectifier, Resistive Load --- Spectrum of 
Load VoltageLoad Voltage
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Half Wave Rectifier with RC Load
• More practical rectifier
• For large RC, this behaves like a peak detector
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Half Wave Rectifier with RC Load
• Note poor power factor due to peaky line current
• Note DC component of line current
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Half Wave Rectifier with RC Load --- Spectrum of Line 
CurrentCurrent

Introduction to Power Electronics© M. T. Thompson, 2009 112



Crest Factor
• Another term sometimes used in power engineering
• Ratio of peak value to RMS value

F i t f t 1 4• For a sinewave, crest factor = 1.4
– Peak = 1; RMS = 0.707

• For a square wave, crest factor = 1
– Peak = 1; RMS = 1
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Harmonics and THD - SinewaveHarmonics and THD Sinewave

1 5
Number of harmonics N = 1 THD = 0 %

• THD = 0%

1

1.5

0

0.5

-0.5

0

-1 5

-1
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Harmonics and THD - Sinewave + 3rd HarmonicHarmonics and THD Sinewave  3rd Harmonic
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Harmonics and THD --- Sinewave + 3rd + 5th 
Harmonic

• THD = 38.9%
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Harmonics --- Up to N = 103Harmonics --- Up to N = 103
• THD = 48%
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Full-Wave Rectifier (Single Phase)Full-Wave Rectifier (Single Phase)
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Full-Wave Rectifier with Capacitor Filter
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6-Pulse (3-Phase) Rectifier
• Typically used for higher-power applications where 3-

phase power is available
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12-Pulse Rectifier
T ll l d 6 l tifi• Two paralleled 6-pulse rectifiers

• 5th and 7th harmonics are eliminated
• Only harmonics are the 11th, 13th, 23rd, 25th …y
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Techniques for Analysis of Power Electronics 
Circuits

• Power electronics systems are often switching, 
li d ith th t i t A i t fnonlinear, and with other transients.  A variety of 

techniques have been developed to help 
approximately analyze these circuitspp y y
– Assumed states 
– Small ripple assumption
– Periodic steady statePeriodic steady state

• After getting approximate answers, often circuit 
simulation is used
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Assumed States
• In a circuit with diodes, etc. or other nonlinear 

elements, how do you figure out what is happening ?
G d th h k• Guess….and then check your guess

1 10 V1:10

120 VAC

Vout
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Small Ripple AssumptionSmall Ripple Assumption

• In power electronic circuits, generally our interest is in 
the average value of voltages and current if the ripplethe average value of voltages and current if the ripple 
is small compared to the nominal operating point.  

• In DC/DC converters, often our goal is to regulate the 
average value of the output voltage vo.  State-space 
averaging is a circuit approach to analyzing the local 
average behavior of circuit elements.  In this method, g ,
we make use of a running average, or:

t1
∫
−

=
Tt

dv
T

tv ττ )(1)(
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Periodic Steady StatePeriodic Steady State
• In the periodic steady state assumption, we assume that 

all startup transients have died out and that from period-p p
to-period the inductor currents and capacitor voltages 
return to the same value.  

• In other words for one part of the cycle the inductor• In other words, for one part of the cycle the inductor 
current ripples UP; for the second part of the cycle, the 
inductor current ripples DOWN.
C l l t t d d it hi b• Can calculate converter dependence on switching by 
using volt-second balance.
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Motivation for DC/DC Converter: Offline Linear +5V, 
50 Watt Regulator

VV

• Must accommodate:
A

C
Cbus

Linear
Reg.

VoVbus

I d t i t i• Must accommodate:
– Variation in line voltage

• Typically 10%

– Drop in rectifier transformer
dropoutbus VVV +> 5

• In order to maintain 
regulation:

Drop in rectifier, transformer
• Rectifier 1-2V total
• Transformer drop depends on 

load current

Ripple in bus voltage

• Regulator power dissipation:
[ ]b IVVP −><≈– Ripple in bus voltage

D t lt f l t

• For <Vbus> = 7V and Io = 10A, 
P = 20 Watts !

bus

L
bus C

IV
120

≈Δ

[ ] oobus IVVP ><≈
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– Dropout voltage of regulator
• Typically 0.25-1V

P  20 Watts !



Offline Switching +5V 50 Watt RegulatorOffline Switching +5V, 50 Watt Regulator
• If switching regulator is 90% efficient, Preg =  5.6 Watts 

(ignoring losses in diode bridge and transformer)(ignoring losses in diode bridge and transformer)
• Other switching topologies can do better

A
C Switching

 Reg.
VoVbus

Cbus
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PSIM SimulationPSIM Simulation
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PSIM Simulation
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Switcher Implementation
D

Vi

D

vo(t)
+

-

RL

• Switch turns on and off with switching frequency fsw
• D is “duty cycle ” or fraction of switching cycle thatD is duty cycle,  or fraction of switching cycle that 

switch is closed
Vi

vo(t)

<v (t)>

DT T T+DT
t

vo(t)

• Average value of output <vo(t)> = DviAverage value of output vo(t)   Dvi
– Can provide real-time control of <vo(t)> by varying duty cycle

• Unfortunately, output is has very high ripple at 
switching frequency f
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Switcher Design IssuesSwitcher Design Issues
• Lowpass filter provides effective ripple reduction in vo(t) if 

LC >> 1/fLC >> 1/fsw
• Unfortunately, this circuit has a fatal flaw…..

D

Vi

D

vo(t)
+

RL

L

Ci o( )

-
LC
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Buck ConverterBuck Converter
• Add diode to allow continuous inductor current flow 

when switch is open

V

D

v (t)
+

R

L

CVi vo(t)

-

RLC

• This is a common circuit for voltage step-down 
applications
E l f b k t i l t• Examples of buck converter given later
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Types of ConvertersTypes of Converters
• Can have DC or AC inputs and outputs
• AC ⇒ DC

– Rectifier
• DC ⇒ DC

– Designed to convert one DC voltage to another DCDesigned to convert one DC voltage to another DC 
voltage

– Buck, boost, flyback, buck/boost, SEPIC, Cuk, etc.
• DC ⇒ AC• DC ⇒ AC

– Inverter
• AC ⇒ AC

– Light dimmers
– Cycloconverters

Introduction to Power Electronics© M. T. Thompson, 2009 133



Ideal Power ConverterIdeal Power Converter
• Converts voltages and currents without dissipating 

power PPp
– Efficiency = 100%

lossout

out

in

out

PP
P

P
P

+
==ε

• Efficiency is very important, especially at high power 
levels
Hi h ffi i lt i ll i (d t li• High efficiency results in smaller size (due to cooling 
requirements)

• Example: 100 kW converterp
– 90% efficient dissipates 11.1 kW
– 99% efficient dissipates 1010 W
– 99 9% efficient dissipates 100 W

⎟
⎠
⎞

⎜
⎝
⎛ −= 11

εoutdiss PP
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– 99.9% efficient dissipates 100 W



Buck ConverterBuck Converter
• Also called “down converter”
• Designed to convert a higher DC voltage to a lower DC 

voltage
• Output voltage controlled by modifying switching “duty 

ratio” D D
iLratio  D

Vo

D
LVcc

+
C R

vc

-

C R

• We’ll figure out the details of how this works in later 
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Possible ImplementationsPossible Implementations
• Many companies make buck controller chips (where 

you supply external components) as well as complete y pp y p ) p
modules

Introduction to Power Electronics© M. T. Thompson, 2009 136



Real-World Buck Converter IssuesReal-World Buck Converter Issues
• Real-world buck converter has losses in:

– MOSFETMOSFET
• Conduction loss
• Switching loss

I d t– Inductor
• ESR

– Capacitor
• ESR

– Diode
• Diode ON voltageDiode ON voltage
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Converter Loss Mechanisms

• Input rectifier
• Input filtering

• Control system 
– Controller

C t i d i– EMI filtering
– Capacitor ESR

• Transformer

– Current sensing device
• Switch

– MOSFET conduction Transformer
– DC winding loss
– AC winding loss

• Skin effect

loss
– MOSFET switching loss
– Avalanche loss• Skin effect

• Proximity effect
– Core loss

Avalanche loss
– Gate driving loss
– Clamp/snubber

Di d• Hysteresis
• Eddy currents

• Output filter

• Diode
– Conduction loss
– Reverse recovery
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