Worcester Polytechnic Institute			
Department of Electrical and Computer Engineering			
EE523 Power Electronics, Fall 2008			
COURSE DESCRIPTION, GUIDELINES, AND SYLLABUS			
Lecturer:	Prof. Marc T. Thompson, office Atwater Kent Room 316, (marctt@thompsonrd.com).		
	Office hour: Thursdays before class, 5-6 pm		
TA:	Ms. Grazia Todeschini (grazia@wpi.edu), AK225, 508-831-6697.		
	Office hour: By appointment		
Course level:	Graduate level		
Course website:	ourse website: Found on myWPI		
Lecture: Thursdays, 6-8:45 pm			
Marc Thompson WP	I website: http://www.ece.wpi.edu/People/mtt.html		
Marc Thompson bus	iness website: http://www.thompsonrd.com		

PHILOSOPHY

This is a graduate-level power electronics course, covering power electronic systems, device physics, rectifiers, switching power converters (DC/DC and resonant), control issues, practical design issues such as snubbers, gate drives, and thermal design, and magnetic design. The focus is on real-world, approximate design techniques, case studies, and intuitive methods, with special emphasis on switching DC/DC converters. Circuit simulations will be used when necessary.

PREREQUISITES

Basic background in device physics, transistor amplifier and operational amplifier design. Control systems. Electromagnetism. Access to web searching, MATLAB and PSPICE simulation tools. It is also assumed that the students understand the basics of Bode plots, pole-zero analysis, and Laplace transforms.

COURSE LOAD

Lectures and In-class Interaction

Attendance in lecture and class participation is required. It is expected that the lecture will be very interactive with a lively "give-and-take."

Problem Sets

Problem sets will be given most weeks during lecture and will be due the following week. Material covered will be derived from lecture topics and reading assignments. Some homework assignments may contain a lab or simulation (PSIM, SPICE or MATLAB component).

All problem sets must be legible with clearly labeled axes on graphs. Circle your answers. Write the units for each numerical result. Note that the instructor will do a cursory grading of your homework set. It is the student's responsibility to check his results vs. the homework solutions. <u>Late problem sets will not be accepted.</u>

Design Problems

Several 2-week design problems will be given. The design problem assignments will be wider in scope than the homework assignments and will require significant design effort, simulations and/or lab work, and a written report.

10/22/08

<u>Exams</u>

There will be two or more exams covering material in lecture, problem sets, design problems, and reading assignments. During the exams the use of the course notes, textbook and of the calculator is allowed, but any communication device and laptop should be shut off.

GRADING

Grading will be done with the *approximate* percentage distribution (subject to change without notice):

Problem sets	25%
Design problems	45%
Classroom participation	10%
Exams	20%

REQUIRED TEXT AND SOFTWARE

Ned Mohan, Tore M. Undeland and William P. Robbins, *Power Electronics Converters, Applications, and Design*, Third Edition, John Wiley, 2003. The text will be supplemented as needed with instructor's notes and Powerpoint presentations.

PSPICE AND PSIM SIMULATION TOOLS

Student (evaluation) version of PSPICE will be provided. We'll be using the Microsim evaluation version 8.0. A tutorial on how to use this is found here:

http://www.coe.uncc.edu/mosaic/mosaic_help/pc_help/pspice/getting_started1.html

The demo version of PSIM is available here: http://www.powersimtech.com/download.html

MAGNETIC SIMULATION TOOLS

I'll be intermittently using magnetic finite-element analysis tools to illustrate magnetic fields, etc. The program that I use for 2-dimensional analysis is freeware, provided by Dr. David Meeker of Foster-Miller (Waltham, MA), and the software can be found here: http://femm.foster-miller.net/wiki/HomePage

OTHER RECOMMENDED TEXTS:

- 1. Robert Erickson and Dragan Maksimovic, *Fundamentals of Power Electronics*, 2nd Edition, Kluwer Academic Publishers, 2001 ISBN# 0-7923-7270
- 2. A. E. Fitzgerald, Charles Kingsley, Jr. and Stephen D. Umans, *Electronic Machinery*, 5th edition, McGraw-Hill, 1990 (TK2181.F5). *Useful for transformer design and motor analysis*.
- 3. General Electric Corporation, <u>SCR Manual</u>, 6th edition, Prentice-Hall, 1979. Useful reference, especially on thermal modeling.
- 4. Daniel W. Hart, *Introduction to Power Electronics*, Prentice Hall, 1997 (TK7881.15.H37)
- 5. International Rectifier Corp., *Hexfet Power MOSFET Designer's Manual*, 1993
- 6. John G. Kassakian, Martin F. Schlecht, and George C. Verghese, *Principles of Power Electronics*, Addison-Wesley, 1991 (TK7881.15.K37). *Good reference, especially on control systems, state-space averaging, etc.*
- 7. Philip T. Krein, *Elements of Power Electronics*, Oxford University Press, 1998 (TK7881.15.K74)
- 8. Eric Lowdon, Practical Transformer Design Handbook, Howard W. Sams & Co., Inc., 1980
- 9. Abraham I. Pressman, <u>Switching and Linear Power Supply, Power Converter Design</u>, Hayden Book Company, Inc., 1977. (TK7868.P6P74). Older reference, but useful step-by-step converter examples are given.

- Muhammad H. Rashid, <u>Power Electronics Circuits, Devices, and Applications</u>, 2d edition, Prentice-Hall, 1993 (TK7881.15.R37)
- 11. SGS-Thomson, Inc., *Designers' Guide to Power Products, Application Manual*, 2nd edition, June 1992.
- 12. Siliconix, Inc., *Mospower Applications*, 1984 (TK7871.95.M67)
- 13. E. C. Snelling, Soft Ferrites, CRC Press
- 14. Ralph E. Tarter, Solid-State Power Conversion Handbook, John Wiley, 1993
- 15. Marc Thompson, Intuitive Analog Circuit Design, Elsevier, 2006
- 16. Alex Kusko and Marc Thompson, *Power Quality in Electronic Systems*, McGraw-Hill, 2007
- 17. Unitrode Corp., Applications Handbook, 1997
- 18. Unitrode Corp., *Power Supply Applications Manual*, 1993
- 19. Marc Thompson links website: http://www.thompsonrd.com/links.htm

COLLABORATION AND ACADEMIC HONESTY¹

All the rules of WPI's <u>Academic Honesty Policy</u> will be in effect

(http://www.wpi.edu/Pubs/Policies/Judicial/sect5.html). You must review them and be familiar with them. They describe procedures that will be taken if dishonesty is suspected.

You may not copy from any source (person, book, old homework, web etc.). If you are not sure whether your or a classmate's behavior follows the Honesty Policies, be sure to ask. In general, collaboration on the homeworks and design problems is discouraged make sure you do your own work.

¹ Excerpted from Prof. Fred Looft's Academic Honesty webpage, http://ece.wpi.edu/~fjlooft/honesty.htm ECE523Fall2008SYLLABUS 10-24-2008.doc 3

TENTATIVE COURSE SYLLABUS --- (SUBJECT TO CHANGE)

	Date	Lecture material covered	Reading Assignment Due at Next Lecture
1	9/4/08	INTRODUCTION	Problem Set #1 handed out
		• Course logistics, overview,	Mohan: Chapters 1, 2, 3.1-3.2
		requirements, prerequisites	Powerpoints: 00, 01, 02, 03A, 03C, 03D
		Academic honesty	MTT notes:
		• Introduction to power electronics	"Lecture note on switches.doc"
		• Background, motivation, etc.	"Note on RMS value of various
		• Introduction to power switches	waveforms.doc"
		Circuit concepts	"Energy dissipated charging a
		Sinusoidal steady state	capacitor.doc"
		Power factor	"PSIM Hints 12-24-07.doc"
		Harmonics	
		• Root-mean square (RMS)	
2	9/11/08	INTRODUCTION TO	Problem Set #1 due
		MAGNETIC DESIGN	Problem Set #2 handed out
		Basic magnetic concepts	Powerpoints: 03B, 03C, 04, 05
		Ampere's Law	MTT note:
		Gauss' Law	"Note on power and the Poynting
		Faraday's Law	vector.doc"
		• Lorentz force law	
		Magnetic components	
		Inductors	
		Transformers	
		ISSUES IN COMPUTER	
		SIMULATION	
		DIODE RECTIFIERS	
		• Single wave rectifier with	
		resistive load	
		• Single wave with LR load	
		Current commutation	
3	9/18/08	DIODE RECTIFIERS	Problem Set #2 due
		• Single wave with LR load	Problem Set #3 handed out
		Current commutation	Powerpoints: 05,06
		• 3 phase, full bridge	MTT notes:
		PHASE CONTROLLED	"Note on 3 Phase Rectifier Analysis"
		RECTIFIERS	"Examples of power factor
		• 3 phase rectifiers	calculations.doc"
			"Power factor with harmonics.doc"

4	9/25/08	INTRODUCTION TO DC/DC	Problem Set #3 due
		CONVERTERS	Problem Set #4 out
		• Buck converter	Powerpoints: 07A
		Boost converter	MTT notes:
		Buck-boost converter	"Basics of DC_DC converters DRAFT
		• Cuk converter	4.doc"
		• Output voltage ripple	Manufacturers notes:
		 Interleaving 	Analogic "Output Capacitors"
			Microchip "Synchronous Buck
			Design"
			National Semiconductor "LM2852
			Synchronous Buck Regulator"
5	10/2/08	REAL-WORLD DC/DC	Problem Set #4 due
		CONVERTER ISSUES	Design Problem #1 handed out; due in 2
		CONVERTERS WITH	weeks (buck converter)
		ELECTRICAL ISOLATION	Powerpoints: 07B, 07C, 10A, 10B
		• Flyback	MTT note:
		• Forward converters	"Buck converter with parasitics"
			Manufacturers notes:
			Analogic note "Output Capacitors"
			Microchip "Synchronous Buck Design:
			National Semiconductor LM2852
6	10/9/08	EFFICIENCY OF CONVERTERS	Powerpoints: 07B, 08
		INVERTERS	MTT notes:
		EXAM#1	"Switching loss in buck converters"
			"Boost converter with inductor
			losses.pdf"
			"Boost converter efficiency including
			inductor losses.doc"
			Manufacturers notes:
			Linear Tech note "50 A Synchronous
			Buck"
			Maxim "Buck Converter Noise"
7	10/16/08	RESONANT CONVERTERS	• Design problem #1 due (buck
		• PSIM study: noncontact resonant	converter)
		converter	PS5 handed out
		INTRO TO MOTOR DRIVES	Powerpoints: 09, 12A
8	10/23/08	MORE ON MOTOR DRIVES	PS5 due
			PS6 handed out
			Powerpoints: 13, 14, 15
9	10/30/08	POWER QUALITY AND UPS	PS6 due
			PS7 handed out
			Powerpoints: 11A, 16, 17, 18
10	11/6/08	POWER DEVICES	PS7 due
		• Basic semiconductor physics (Ch.	Design Problem #2 handed out (boost
		19)	converter with losses)

	-		10/22
		• Power diodes (Ch. 20)	Mohan: Skim chapters 19, 20, 21, 23-26
		• Power BJTs (Ch. 21)	Powerpoints: 19, 20, 21, 22, 23, 24, 25,
		• Power MOSFETs (Ch. 22)	26
		• Thyristors (Ch. 23)	MTT notes:
		• IGBTs (Ch. 25)	"Power semiconductor devices.pdf"
11	11/13/08	MORE ON POWER DEVICES	Powerpoints: 28A, 28B
		• MOSFET switching speed analysis	MTT notes
		• Use of gate charge data	"Reading a MOSFET datasheet,"
		• Gate drive design	"Note on Using MOSFET Gate Charge
			Test Data"
			"Lecture Note on Switches"
			"Mosfet switching speed example"
			"Effect of source inductance on
			MOSFET switching speed.pdf",
			"MOSFET selection and figures of
			merit.pdf"
			Manufacturers notes:
			International Rectifier: AN936, 937,
			944, "Power Mosfet Basics", IRF150
			datasheet
			On-Semiconductor: AN1090
12	11/20/08	BASIC THERMAL DESIGN	Design problem #2 due
		• Conductive, convective and	Design problem #3 handed out
		radiative heat transfer	(inductor design)
		• Heat sink selection	Powerpoints: 29A, 29B, 30A
		INTRODUCTION TO BASIC	MTT notes:
		MAGNETICS	"Magnetic brake thermal model.pdf"
		 Maxwell's equations 	Paper:
		 Magnetic circuits 	Aavid "How to select a heat sink"
			Manufacturers notes:
			IRF "AN-997 Heat Sinking" and
			"AN-1057 Heatsink characteristics"
			(No class next week Thanksgiving !)
	11/27/08	NO CLASS THANKSGIVING	

13	12/4/08	INDUCTOR AND	Powerpoints: 30A,B,C,D,E,F,G,H
		TRANSFORMER DESIGN	MTT notes:
		• Demonstrations:	"Note on AC winding resistance.doc"
		AC magnetic levitation	"Inductance Calculation Techniques Part
		• Eddy current braking	1.doc"
		Magnetic field from power	"Inductance Calculation Techniques Part
		cables	2.doc"
		• Wire charts	"Note on losses in ferrite cores.doc"
		Transformer design	"Note on wire packing factor kp.doc"
		• High frequency losses in	Papers:
		magnetics	"Thompson Electrodynamic Magnetic
		Core losses	Suspension.pdf"
		• Skin and proximity losses	Witulski "Introduction to modeling of
		Dowell method	transformers and coupled inductors"
		• Litz wire	Beattie "Inductance 101.pdf"
			P. L. Dowell, "Effects of eddy currents in
			transformer windings.pdf"
			Dixon "Eddy current losses in transformer
			windings.pdf'
			Manufacturers notes:
			Texas Instruments "Windings.pdf"
			Texas Instruments "Magnetic core
			characteristics.pdf"
			Ferroxcube "3f3 ferrite datasheet.pdf"
			Ferroxcube "Ferrite selection guide.pdf"
14	12/11/08	EXAM #2	Design problem #3 due
		PRACTICAL DESIGN ISSUES	Mohan: Chapters 27, 29
		• Snubbers	MTT notes:
		• Other	"Snubbers"
			"Snubbers again"
			"Power Factor Corrected Offline Supplies",
			" High Power Laser Driver"
			Manufacturers notes:
			Texas Instruments Snubber circuits.pdf
			Fairchild AN-4147 Snubber design for flyback
	10/10/00	SNOW DATE	converters
1	1 12/18/08	I SINUW DATE	

