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Course Overview --- Day 2
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• Review of Maxwell’s equations 
• Ampere’s law, Gauss’ law, Faraday’s law
• Magnetic circuits
• Flux, flux linkage, inductance and energy

Overview of Magnetics
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Review of Maxwell’s Equations
• First published by James Clerk Maxwell in 

1864
• Maxwell’s equations couple electric fields 

to magnetic fields, and describe:
– Magnetic fields
– Electric fields
– Wave propagation (through the wave 

equation)
• There are 4 Maxwell’s equations, but in 

magnetics we generally only need 3:
– Ampere’s Law
– Faraday’s Law
– Gauss’ Magnetic Law James Clerk Maxwell
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Review of Maxwell’s Equations
• We’ll review Maxwell’s equations in words, followed by a 

little bit of mathematics and some computer simulations 
showing the magnetic fields
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Ampere’s Law
• Flowing current creates a magnetic 

field

• In magnetic systems, generally there 
is high current and low voltage (and 
hence low electric field) and we can 
approximate for low d/dt:

• In words:  the magnetic flux density 
integrated around any closed contour 
equals the net current flowing through 
the surface bounded by the contour

AdE
dt
dAdJldH
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o
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⋅+⋅=⋅ ∫∫∫ ε
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AdJldH
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André-Marie Ampère
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Finite-Element Analysis (FEA) 
• Very useful tool for visualizing and solving shapes and 

magnitudes of magnetic fields
• FEA is often used to simulate and predict the performance 

of motors, etc.
• Following we’ll see some 2-dimensional (2D) FEA results to 

help explain Maxwell’s equations
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Field From Current Loop, NI = 500 A-turns 
• Coil radius R = 1”; plot from 2D finite-element analysis



Electromechanics Magnetics and Energy Conversion
2-9

Faraday’s Law
• A changing magnetic flux impinging on 

a conductor creates an electric field 
and hence a current (eddy current)

• The electric field integrated around a 
closed contour equals the net time-
varying magnetic flux density flowing 
through the surface bound by the 
contour

• In a conductor, this electric field creates 
a current by:

• Induction motors, brakes, etc.

∫∫ ⋅−=⋅
SC

AdB
dt
dldE
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EJ
rr

σ=
Michael Faraday
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Circular Coil Above Conducting Aluminum Plate
• Flux density plots at DC and 60 Hz
• At 60 Hz, currents induced in plate via magnetic induction 

create lift force
DC 60 Hz
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Demonstration of Faraday’s Law: Electrodynamic 
Drag (NdFeB Magnet-in-Tube)

• Process:
– Moving magnet creates changing magnetic field in 

copper tube
– Changing magnetic field creates induced voltage
– Induced voltage creates current
– By Lorentz force law, induced current and applied 

magnetic field create drag force
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Gauss’ Magnetic Law
• Gauss' magnetic law says that the 

integral of the magnetic flux density over 
any closed surface is zero, or:

• This law implies that magnetic fields are 
due to electric currents and that 
magnetic charges (“monopoles”) do not 
exist.

• Note: similar form to KCL in circuits.
(We’ll use this analogy later…)

∫ =⋅
S

dAB 0

B1, A1 B2, A2

B3, A3

221133 ABABAB +=

Carl Friedrich Gauss
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Gauss’ Law --- Continuity of Flux Lines

1 2 3 0φ φ φ+ + =
Reference:  N. Mohan, et. al., Power Electronics  Converters, Applications and Design, Wiley, 2003, pp. 48
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Lorentz Force Law
• Experimentally derived rule:

• For a wire of length l carrying current I perpendicular to 
a magnetic flux density B, this reduces to:

∫ ×= BdVJF

IBlF =
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Lorentz Force Law and the Right Hand Rule

∫ ×= BdVJF

Reference:  http://www.physics.brocku.ca/faculty/sternin/120/slides/rh-rule.html
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Intuitive Thinking about Magnetics
• By Ampere’s Law, the current J and the magnetic field H

are generally at right angles to one another
• By Gauss’ law, magnetic field lines loop around on 

themselves
– No magnetic monopole

• You can think of high- μ magnetic materials such as steel 
as an easy conduit for magnetic flux…. i.e. the flux easily 
flows thru the high- μ material
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Magnetic Field (H) and Magnetic Flux Density (B)
• H is the magnetic field (A/m in SI units) and B is the 

magnetic flux density (Weber/m2, or Tesla, in SI units)
• B and H are related by the magnetic permeability μ by B = 

μH
• Magnetic permeability μ has units of Henry/meter
• You can think of high- μ magnetic materials such as steel 

as an easy conduit for magnetic flux…. i.e. the flux easily 
flows thru the high- μ material

• In free space μo = 4π×10-7 H/m
• Note that B and H are vectors; they have both a magnitude 

and a direction
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Right Hand Rule and Direction of Magnetic Field

Reference:  http://sol.sci.uop.edu/~jfalward/magneticforcesfields/magneticforcesfields.html
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Forces Between Current Loops

Reference:  http://sol.sci.uop.edu/~jfalward/magneticforcesfields/magneticforcesfields.html



Electromechanics Magnetics and Energy Conversion
2-20

Inductor Without Airgap

Constitutive relationships 
In free space: 

HB oμ=  
Magnetic permeability of free space μo = 4π×10-7 Henry/meter. 
In magnetic material, magnetic permeability is higher than μo: 

HB μ=  

• Magnetic flux is constrained to flow within steel
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Example: Flux in Inductor with Airgap

Ampere's law: 

NIgHlHdAJdlH gc
S

c =+⇒⋅=⋅∫ ∫  

Let's use constitutive relationships: 

NIg
B

l
B

o

g
c

c

c =+
μμ  
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c
g

c
c
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Put this into previous expression: 

⎟
⎟
⎠
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Solve for flux: 
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If g/μoAg >> lc/μAc, 

go A
g

NI

μ

≈Φ  

Example: Flux in Inductor with Airgap
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Magnetic Circuits
• Use Ohm’s law analogy to model magnetic circuits

• Use magnetic “reluctance” instead of resistance

• This is a very powerful method to get approximate 
answers in magnetic circuits

ℜ⇔
Φ⇔

⇔

R
I

NIV

A
l

A
lR

μσ
=ℜ⇔=



Electromechanics Magnetics and Energy Conversion
2-24

Magnetic-Electric Circuit Analogy
• In an electric circuit, voltage V forces current I to flow 

through resistances R
• In a magnetic circuit, MMF NI forces flux Φ to flow through 

reluctances ℜ
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C-Core with Gap --- Using Magnetic Circuits
• Flux in the core is easily found by:

• Now, note what happens if g/μo >> 
lp/μc:  The flux in the core is now 
approximately independent of the 
core permeability, as:

• Inductance:

N turns

Average magnetic path length lp
inside core,

cross-sectional area A

Airgap, g

+-NI

Φ

ℜcore
ℜgap

cocc

pgapcore

A
g

A
l

NINI

μμ
+

=
ℜ+ℜ
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gap
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g
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≈
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A
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μ
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C-Core with Gap --- FEA
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Fringing Fields in Airgap
• If fringing is negligible, Ac = Ag
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Example:  C-Core with Airgap
• Fitzgerald, Example 1.1; with Bc = 1.0T, find reluctances, 

flux and coil current
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Example:  C-Core with Airgap
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Example:  C-Core with Airgap --- FEA
• NI = 400 A-turns
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Example:  C-Core with Airgap --- FEA
• NI = 400 A-turns,  close up near the core
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Example:  C-Core with Airgap --- FEA Result
• Flux density in the core is approximately 1 Tesla



Electromechanics Magnetics and Energy Conversion
2-33

Example:  C-Core with Airgap --- Gap Detail
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Example:  Simple Synchronous Machine
• Fitzgerald, Example 1.2
• Assuming μ ∞, find airgap flux Φ and flux density Bg

Assume I = 10A, N = 1000 turns, g = 1 cm and Ag = 2000 
cm2
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Aside:  What Does Infinite Core μ Imply?

In core: 
Ccc AB=Φ  

 
In airgap: 

ggg AB=Φ  
 
In core, Bc is finite; this means that if μ  ∞, then Hc  0 for finite 
Bc.  Also, infinite μ implies zero reluctance 
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• Some initial thoughts, 
before doing any 
equations:
– By symmetry, airgap 

flux and flux density 
are the same in both 
gaps

– Since permeability is 
infinite, H inside steel 
is zero

Example:  Simple Synchronous Machine
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Reluctances: 

Wb
turnsA

A
g

go
gg

−
=

×
==ℜ=ℜ − 39789

)01.0)(2000)(104(
)01.0(

2721 πμ
 

 
Flux: 

WbNI

gg

126.0
)39789)(2(
)10)(1000(

21

==
ℜ+ℜ

=Φ  

 
Magnetic flux density: 

T
m
WbWb

A
B

g

63.063.0
)01.0)(2000(

126.0
22 ===

Φ
=  

Example:  Simple Synchronous Machine
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Flux Linkage, Voltage and Inductance
• By Faraday’s law, changing magnetic flux density creates 

an electric field (and a voltage)

• Induced voltage:

∫∫ ⋅−=⋅
SC

AdB
dt
dldE

vrvr

dt
d

dt
dNv λ

=
Φ

=  

λ = "flux linkage" = NΦ 
 
Inductance relates flux linkage to current
 

I
L λ
=  
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Finding Inductance Using Magnetic Circuits

g
NA

I
L

g
INA

N

A
g
NI

go

go

go

2

2

μλ

μ
λ

μ

=≈

=Φ≈

≈Φ

• Let’s at first assume infinite core permeability; this means 
that the reluctance of the core is zero

• Note that inductance always scales as N2 (why is that?)
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Magnetic Circuit with Two Airgaps

Total flux:  
21 ℜℜ

=Φ
NI  

 

Reluctances:  
1

1
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g

oμ
=ℜ  and 
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2
2 A

g
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Magnetic Circuit with Two Airgaps (cont.)

Flux in leg#1:  
1

1

1
1 g

NIANI oμ=
ℜ

=Φ  

 

Flux in leg#2:  
2

2

2
2 g

NIANI oμ=
ℜ

=Φ  

 

Flux density in leg#1:  
11

1
1 g

NI
A

B oμ=
Φ

=  

Flux density in leg#2:  
22

2
2 g

NI
A

B oμ=
Φ

=  
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Inductance vs. Relative Permeability
• What happens if we assume finite core permeability?
• Reluctance of the core is now finite as well

Reluctances:  
c

c
c A

l
μ

=ℜ  and 
A

g

o
g μ
=ℜ  

Let’s assume that Ac = Ag = A 
 

Flux: 
gc

NI
ℜ+ℜ

=Φ  

Flux linkage: 
gc

INN
ℜ+ℜ

=Φ=
2

λ  
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Inductance is independent of core permeability if: 

μ
μoclg >>  
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Inductance vs. Relative Permeability
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Example:  Effects of Finite Permeability
• Fitzgerald, problem 1.5
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Example:  Effects of Finite Permeability
• Relative μ vs. B
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Example:  Effects of Finite Permeability
• B/H curve
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Example:  Effects of Finite Permeability
• Current calculation

From Ampere’s law: 
 

NIgHlH gcc =+  
 
In core: 

 
 
 

In gap (let’s assume Bc = Bg = B): 

o
g

B
H

μ
=  

 
Put this back into Ampere’s law: 

Agl
N
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NIBgBl
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⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
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μ
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Example:  Effects of Finite Permeability
• Coil flux linkage λ as a function of coil current
• Note that at low current, λ-I curve is linear, indicating 

constant inductance
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Example:  
MATLAB Script
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Inductance and Energy
• Magnetic stored energy (in Joules) is:

• This is a good thing to remember

2

2
1 LIW =
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Magnetic Circuit with Two Windings
• Note that flux is the sum of flux due to i1 and that due to i2
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Magnetic Circuit with Two Windings
• Note that by the right-hand rule the flux due to i1 and i2 are 

additive given the current directions shown
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Magnetic Circuit with Two Windings
• Note that by the right-hand rule the flux due to i1 and i2

are additive given the current directions shown
Flux:  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=Φ

g
A

iNiN coμ)( 2211  

 
Flux linkage for coil #1: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=Φ=

g
A

iNN
g
A

iNN coco μμ
λ 2211

2
111  

 
We can write this as: 
 

2121111 iLiL +=λ  
 
L11 is “self inductance” of coil #1 
L12 is “mutual inductance” between coils #1 and 
#2 
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Magnetic Circuit with Two Windings
Flux linkage for coil #2: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=Φ=

g
A

iN
g
A

iNNN coco μμ
λ 2

2
212122  

 
Or rewriting: 

2221212 iLiL +=λ  
 
Or, in matrix form: 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

2
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i
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“Soft” Magnetic Materials
• Materials with a small B/H curve, such as steels, etc.
• Much of the previous analysis assumed that steel had 

infinite permeability (μ ∞) or that permeability was 
constant and large.

• However, soft magnetic materials exhibit both saturation 
and losses
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B-H Curve and Saturation
• Definition of magnetic permeability: slope of B-H curve

Reference:  N. Mohan, et. al., Power Electronics  Converters, Applications and Design, Wiley, 2003, pp. 48
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BH Curve for M-5 Steel
• Note horizontal scale is logarithmic
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Hysteresis Loop
• Real-world magnetic materials have a “hysteresis loop”
• Hysteresis loss is proportional to shaded area
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B-H Loop for M-5 Grain-Oriented Steel
• Only the top half of the loops shown for steel 0.012” thick
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BH Curves for Various Soft Magnetic Materials

Reference:  E. Furlani, Permanent Magnet and Electromechanical Devices, Academic Press, 2001, pp. 41
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Relationship Between Voltage, Flux and Current
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Exciting RMS VA per kg at 60 Hz
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Hysteresis Loop Size Increases with Frequency
• Hysteresis loss increases as frequency increases

Reference:  Siemens, Soft Magnetic Materials (Vacuumschmelze Handbook), pp. 30
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Total Core Loss
• Total core loss is the sum of:

– Hysteresis loss
– Eddy current losses

• Eddy current losses are due to induced currents (via 
Faraday’s law)

• Eddy current losses are minimized by laminating magnetic 
cores
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Magnetic steel 
lamination

Insulator

0.5 t

t (typically 
0.3 mm)

• Cores made from conductive magnetic materials must be 
made of many thin laminations. Lamination thickness < skin 
depth.

Laminated Core
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x

dx

-x

L

d

w

B sin( ωt)

x

y

z

Eddy current flow path

Eddy Current Loss in Lamination
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Total Core Loss
• M-5 steel at 60 Hz
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Total Core Loss vs. Frequency and Bmax
• Core loss depends on peak flux density and excitation 

frequency
• This is the curve for a high frequency core material

Reference:  http://www.jfe-steel.co.jp/en/products/electrical/jnhf/02.html
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Process to Find Core Loss
• Find maximum B
• From this B and 

switching frequency, 
find core loss per kg

• Total loss is power 
density × mass of 
core
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Example:  C-Core with Airgap --- Current
• Fitzgerald, Example 1.7; find the current necessary to 

produce Bc = 1T
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Example:  C-Core with Airgap --- Solution
The value of Hc needed for Bc = 1 Tesla is read from the 
chart: 

meterturnsAH c /11 −=  
 
The MMF drop in the core is: 

turnsAlH cc −== 33)3.0)(11(  
 
The MMF drop in the airgap is: 

turnsA
gB

gH
o

g
g −=

×
×

== −

−

396
104

)105)(0.1(
7

4

πμ
 

 
The winding current is: 

A
N
MMF

I 8.0
500

39633
=

+
== ∑  
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Example:  Inductor
• Fitzgerald, Example 1.8 Material: M-5 steel 

f = 60 Hz 
N=200 
Bc = 1.5 sinωt Tesla 
Steel is 94% of cross 
section 
Density of steel = 7.65 
g/cm3 

Find: 
(a) Applied voltage 
(b) Peak current 
(c) RMS current 
(d) Core loss 
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Example:  Excitation Voltage
From Faraday’s law: 

dt
dB

NA
dt
dN

dt
de c

c=
Φ

==
λ  

232 104.276.394.022 minininAc
−×==××=

 

)cos(565)cos()5.1( tt
dt

dBc ωωω ==  

)cos(274))cos(565)(104.2)(200( 3 tte ωω =×= −  
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Example:  Peak Current in Winding

From Figure 1.10, B = 1.5T requires H = 
36 A-turns/m 

From Ampere’s law, NIHlc =  

lc = 2×(8”+6”) = 28” = 0.71m 

A
N

Hl
I c 13.0

200
)71.0)(36(
===  
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Example:  RMS Winding Current
From Figure 1.12, at Bmax = 1.5T, Pa = 1.5 
VA/kg 

Core volume:  
3332 107.15.105)28)(94.0)(4( minininVc

−×===
 

Core mass: 

kg
m
kgmVM cc 2.13)7650)(107.1( 3

33 =×== −ρ

 

Core Volt-

Amperes: VAkg
kg
VAPc 8.192.135.1 =×=  

Current: A
E
VAI

RMS
RMS 10.0

2
274

7.19
=

⎟
⎠

⎞
⎜
⎝

⎛
==  
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Example:  Core Loss

From Figure 1.14, core loss density = 1.5 
W/kg at Bmax = 1.5 Tesla.  Total core loss is: 

W
kg
WMPc 20)5.1)(2.13(5.1 ==×=  
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Permanent Magnets
• “Soft” magnetic materials such as magnetic steel can 

behave as very weak permanent magnets
• Permanent magnets, or “hard” magnetic materials, have a 

high coercive force Hc and can produce significant flux in 
an airgap; they also have a “wide” hysteresis loop

Reference:  E. Furlani, Permanent Magnet and Electromechanical Devices, Academic Press, 2001, pp. 39
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Brief History of Permanent Magnets
• c. 1000 BC:  Chinese compasses using lodestone

– Later used to cross the Gobi desert

Reference:  K. Overshott, “Magnetism: it is permanent,”  IEE Proceedings-A, vol. 138, no. 1, Jan. 1991, pp. 22-31
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Brief History of Permanent Magnets

Reference:  R. Parker, Advances in Permanent Magnetism, John Wiley, 1990, pp. 3
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Brief History of Permanent Magnets (cont.)
• c. 200 BC: Lodestone (magnetite) known to the Greeks

– Touching iron needles to magnetite magnetized them
• 1200 AD: French troubadour de Provins describes use of a 

primitive compass to magnetize needles
• 1600: William Gilbert publishes first journal article on 

permanent magnets
• 1819: Oersted reports that an electric current moves compass 

needle

References: 
1. K. Overshott, “Magnetism: it is permanent,”  IEE Proceedings-A, vol. 138, no. 1, Jan. 1991, pp. 22-31
2. R. Petrie, “Permanent Magnet Material from Loadstone to Rare Earth Cobalt,” Proc. 1995 Electronics Insulation and 
Electrical Manufacturing and Coil Winding Conf., pp. 63-64
3. Rollin Parker, Advances in Permanent Magnetism, John Wiley, 1990
4. E. Hoppe, “Geshichte des Physik,”  Vieweg, Braunshweig, 1926, pp. 339
5. W. Gilbert, “De Magnete 1600,”  translation by S. P. Thompson, 1900, republished by Basic Books, Inc., New York, 
1958
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Brief History of Permanent Magnets (cont.)

• c. 1825: Sturgeon invents 
the electromagnet, 
resulting in a way to 
artificially magnetize 
materials

• 7-ounce magnet was able 
to lift 9 pounds

References: 
1. W. Sturgeon, Mem. Manchester Lit. Phil. Soc., 1846, vol. 7, pp. 625
2. Britannica Online
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Brief History of Permanent Magnets (cont.)
• c. 1830: Joseph Henry 

(U.S.) constructs 
electromagnets

Photo reference: Smithsonian Institute archives

Joseph Henry
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Brief History of Permanent Magnets (cont.)
• 1917: Cobalt magnet steels developed by Honda and 

Takagi in Japan
• 1940: Alnico --- first “modern” material still in common use

– Good for high temperatures
• 1960: SmCo (samarium cobalt) rare earth magnets

– Good thermal stability
• 1983: GE and Sumitomo develop neodymium iron boron 

(NdFeB) rare earth magnet
– Highest energy product, but limited temperature range

References: 
1. K. Overshott, “Magnetism: it is permanent,”  IEE Proceedings-A, vol. 138, no. 1, Jan. 1991, pp. 22-31
2. R. Petrie, “Permanent Magnet Material from Loadstone to Rare Earth Cobalt,” Proc. 1995 Electronics Insulation and 
Electrical Manufacturing and Coil Winding Conf., pp. 63-64
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Magnetizing Permanent Magnets
• Material is placed inside magnetizing fixture
• Magnetizing coil is energized with a current producing 

sufficient field to magnetize the PM material

Reference:  E. Furlani, Permanent Magnet and Electromechanical Devices, Academic Press, 2001, pp. 57
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Pictorial View of Magnetization Process

Reference:  R. Parker, Advances in Permanent Magnetism, John Wiley, 1990, pp. 49
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Permanent Magnets
• External effects of permanent magnets can be modeled as 

surface current

Reference:  P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 7
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Permanent Magnets
• After magnetization, M has values of either +Msat or -Msat

Reference:  P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 14-15
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Permanent Magnets
• By a constitutive relationship, B = μo(H+M)
• Since M has values of either +Msat or -Msat, it follows that 

the slope of the BH curve for the permanent magnet is μo

Reference:  P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 15, 23
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Demagnetization Curves of Ceramic 8
• Typical sintered ceramic magnet

Reference:  P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 62
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Demagnetization Curves for NdFeB
• Strong neodymium-iron-boron

Reference:  P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 74
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Permanent Magnets vs. Steel
• Note that PM has much higher coercive force

Permanent magnet: Alnico 5 M-5 steel
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Lines of Force
• Iron filings follow magnetic field lines
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Cast Alnico

Reference:  R. Parker, Advances in Permanent Magnetism, John Wiley, 1990, pp. 65
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Example:  PM in Magnetic Circuits
• Fitzgerald, Example 1.9

g = 0.2 cm 

lm = 1.0 cm 

Am = Ag = 4 cm2 

Find flux in airgap Bg 
for magnetic 
materials 

(a) Alnico 5 

(b) M-5 steel 
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Example:  Solution with Alnico PM
NI = 0, so by Ampere’s law: 

0=+ gHlH gmm  

Solve for Hg:  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

g
l

HH m
mg  

Continuity of flux (Gauss’ law): 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⇒=

g

m
mgmmgg A

A
BBlABA  

Next, solve for Bm as a function of Hm: 

m
m
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m

g
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m

g
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H
A
A

g
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A
A

H
A
A
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

μ

μ

 

Plot this load line on Alnico BH curve 
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Example:  Solution with Alnico
• Result: Bg = 0.3 Tesla

Reference:  P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 89
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Example:  Load Line Solution with M-5 Steel 
• Use same load line; Bg = 0.38 Gauss (much lower than 

with Alnico)
• Note: Earth’s magnetic field ~ 0.5 Gauss
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Some Common Permanent Magnet Materials 
• Other tradeoffs not shown here include: mechanical 

strength, temperature effects, etc.
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Typical NdFeB B-H Curve
• Neodymium-iron-boron (NdFeB) is the highest strength 

permanent magnet material in common use today
• Good material for applications with temperature less than 

approximately 80 - 150C
• Cost per pound has reduced greatly in the past few years
• B/H curve below for “grade 35” or 35 MGOe material

Bm, Tesla

Hm, kA/m

1.2Br

Hc

-915

0.6

-457.5

(BH)max
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NdFeB B-H Curves for Different Grades

Reference: Dexter Magnetics, Inc. http://www.dextermag.com
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Maximum Energy Product
• BH has units of Joules per unit volume
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Maximum Energy 
Product

Why is maximum energy product important? 

(1) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

g

m
mg A

A
BB  

(2) 1−=
gH
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g

mm  

Let’s find Bg
2 
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Solve for magnet volume Volmag 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
mm

gap
gmag HB

Vol
BVol 2  

To use minimum volume of magnet for a 
given Bg, operate magnet at (BH)max point 
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Progress in PM Specs

Reference: J. Evetts, Concise Encyclopedia of Magnetic and Superconducting Materials, Pergamon Press, Oxford, 1992

• One figure of merit is (BH)max product
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Progress in PM Specs

Reference: K. Overshott, “Magnetism: it is permanent,”  IEE Proceedings-A, vol. 138, no. 1, Jan. 1991, pp. 22-31
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Applications for Permanent Magnets
• Disk drives
• Speakers
• Motors

– Rotary motors (Toyota Prius)
– Linear motors (Maglev, people moving)

• Refrigerator magnets
• Proximity sensors and switches
• Compasses
• Magnetic bearings and magnetic suspensions (Maglev)
• Water filtration
• Plasma fusion research, NMR
• Eddy current brakes (ECBs)
• Etc.
References: 
1. R. Parker, Advances in Permanent Magnetism, John Wiley, 1990
2. P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994
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Example:  Maximum Energy Product
• Fitzgerald, Example 1.10:  Find magnet dimensions for 

desired airgap flux density Bg = 0.8 Tesla
At maximum (BH), Bm=1.0 T and Hm = -40 kA/m 

22 6.1
0.1
8.0)2( cmcm

B
B

AA
m

g
gm =⎟

⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

cmcm
H

B
g

H
H

gl
mo

g

m

g
m 18.3

)40000)(104(
8.0)2.0( 7 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−×

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= −πμ

 

So, magnet is 3.18 cm long and 1.6 cm2 in area 
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Open-Circuited Permanent Magnet

Reference:  P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 89
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Open Circuited Permanent Magnet --- FEA
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Short-Circuited Permanent Magnet
• Find B inside core, ignoring any leakage and assuming 

infinite permeability in core
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Short Circuited Permanent Magnet
• For infinite permeability, load line is vertical
• Intersection of load lines occurs at B ≈ Br

Reference:  P. Campbell, Permanent Magnet Materials and their Applications, Cambridge University Press, 1994, pp. 89
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Short Circuited Permanent Magnet --- FEA
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Circuit Modeling of 
Permanent Magnets

Reference: E. P. Furlani, Permanent Magnet and Electromechanical Devices, Academic Press, 2001
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Circuit Modeling of Permanent Magnets
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Circuit Modeling of Permanent Magnets
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Circuit Modeling of Permanent Magnets
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Example:  Circuit Modeling of Permanent 
Magnets
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Example:  Circuit Modeling 
of Permanent Magnets
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Example:  Circuit Modeling of Permanent 
Magnets---FEA
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Example:  Magnetic Circuit With Steel
• Estimate airgap field Bg assuming grade 37 NdFeB
• Airgap g, magnet thickness tm
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Example:  Magnetic Circuit With Steel
• This analysis also ignores leakage
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Example:  
Magnetic Circuit 

With Steel ---
Operating Point 

vs. Magnet 
Thickness tm
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Example:  FEA with Magnet Thickness tm = g/2
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Example:  FEA with Magnet Thickness tm = g
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Example:  FEA with Magnet Thickness tm = 2g
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Example:  Comparison of Different Magnet 
Thicknesses

-1.00E+00

-8.00E-01

-6.00E-01

-4.00E-01

-2.00E-01

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

0.00E+001.00E+002.00E+003.00E+004.00E+005.00E+006.00E+007.00E+008.00E+009.00E+00
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PM and a Winding
• Many motors have permanent magnets, steel and windings

Analysis of PM in closed core, 
with excitation: 

m
m

mm

l
NIH

NIlH

=∴

=
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PM and a Winding --- Load Line
• Note that demagnetization can occur if current is 

sufficiently high



Electromechanics Magnetics and Energy Conversion
2-128

Another Example --- Excitation and Airgap
(1) Ampere’s law:  

NIgHlH gmm =+  

(2) Constitutive law:  gog HB μ=  

(3) Gauss’ law:  ggmm ABAB =  

Solve for Bm-Hm load line: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

m
m

m

mm
om l

NIH
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lA

B μ  
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Another Example --- Excitation and Airgap ---
Load Line



Electromechanics Magnetics and Energy Conversion
2-130

Interesting Calculation Tool

Reference:  www.magnetsales.com

http://www.magnetsales.com/
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What Can You 
Buy?

Reference:  www.dextermag.com
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What Can You 
Buy?

Reference:  www.dextermag.com
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What Can You 
Buy?

Reference:  www.magnetsales.com
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Magnetization Patterns

Reference:  www.magnetsales.com
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Comparison

Reference:  www.magnetsales.com
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Comparison of Maximum Operating 
Temperatures

Reference:  http://www.electronenergy.com/media/Magnetics%202005.pdf
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Comparison of Maximum Operating 
Temperatures

Reference:  http://www.electronenergy.com/media/Magnetics%202005.pdf
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Magnet Comparisons

Reference:  www.magnetsales.com

http://www.magnetsales.com/
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PM Online Resources
• http://members.aol.com/marctt/
• www.dextermag.com
• www.magnetsales.com
• http://www.grouparnold.com/
• Magnetic Materials Producers Association (MMPA 

standard)

http://members.aol.com/marctt/
http://www.dextermag.com/
http://www.magnetsales.com/
http://www.grouparnold.com/
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Some Very Brief Comments on Superconductors
• Superconductors have zero resistance if the temperature is 

low enough, the field acting on the superconductor is low 
enough, and the current through the superconductor is low 
enough 

• Superconductors are classified as “low temperature” (NbTi, 
NbSn) or “high temperature” (YBCO, BSCCO)

• Low-Tc superconductors are usually chilled with liquid helium 
(4.2K)

• High-Tc superconductors are usually used in the 20K-77K 
range

Reference:  Y. Iwasa “Case Studies in Superconducting Magnets,” Plenum Press, 1994
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Some Data on Low-Tc Material
• Shown for niobium titanium
• This type of superconductor is used in the Japanese MLX 

500 km/hr Maglev
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Some Data on High-Tc Material
• Some superconductors are anisotropic; i.e. superconducting 

tapes

Reference:  American Superconductor, www.amsuper.com
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Quotes

It is well to observe the force and virtue and consequence of 
discoveries, and these are to be seen nowhere more 
conspicuously than in printing, gunpowder, and the magnet.
--- Sir Francis Bacon

The mystery of magnetism, explain that to me! No greater 
mystery, except love and hate.
---John Wolfgang von Goethe
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• Selected history
• Types of transformers
• Voltages and currents
• Equivalent circuits
• Voltage and current transformers
• Per-unit system

Transformers --- Overview
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Selected History
• 1831 --- Transformer action 

demonstrated by Michael 
Faraday

• 1880s: modern transformer 
invented

Reference: J. W. Coltman, “The Transformer (historical overview),” IEEE 
Industry Applications Magazine, vol. 8, no. 1, Jan.-Feb. 2002, pp. 8-15
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Early Transformer (Stanley, c. 1880)

William Stanley
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Faraday’s Law
• A changing magnetic flux impinging on 

a conductor creates an electric field 
and hence a current (eddy current)

• The electric field integrated around a 
closed contour equals the net time-
varying magnetic flux density flowing 
through the surface bound by the 
contour

• In a conductor, this electric field creates 
a current by:

• Induction motors, brakes, etc.

∫∫ ⋅−=⋅
SC

dAB
dt
ddlE

EJ σ=
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Magnetic Circuit with Two Windings
• Note that flux is the sum of flux due to i1 and that due to i2
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Types of Transformers
• There are many different types and power ratings of 

transformers: single phase and multi-phase, signal 
transformers, current transformers, etc.
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Instrument Transformer
• Instrument transformers (voltage and current) provide line 

current and line voltage information to protective relays 
and control systems

• Current transformer shown below

Reference:  L. Faulkenberry and W. Coffer, Electrical Power Distribution and Transmission, Prentice Hall, 1996, pp. 131



Electromechanics Magnetics and Energy Conversion
2-151

200A Current Transformer (CT)

Reference:  http://rocky.digikey.com/WebLib/Amveco-Talema/Web%20Data/AC1200.pdf
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Voltage Instrument Transformer

Reference:  http://www.geindustrial.com/products/brochures/ITI.pdf
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Audio Transformer

Reference:  http://rocky.digikey.com/WebLib/Hammond/Web%20Data/560,%20800-844,%20850%20Series.pdf
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Pulse Transformer

Reference:  http://rocky.digikey.com/WebLib/Tamura-Microtran/Web%20Data/STT-107.pdf

• Used for triggering SCRs, etc. where isolation is needed
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Power Distribution Transformer

Reference:  http://www.geindustrial.com/products/brochures/DEA-271-English.pdf

• Provides voltage for the customer
• Typical voltages are 2.3-34.5kV primary, and 480Y/277V or 

208Y/120V 3-phase or 240/120V single phase
• Pole-top transformers typically 15-100 kVA
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E Core Transformer
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Offline Flyback Power Supply

P. Maige, “A universal power supply integrated circuit for TV and monitor applications,”  IEEE Transactions on Consumer 
Electronics, vol. 36, no. 1, Feb. 1990, pp. 10-17
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Transcutaneous Energy Transmission

H. Matsuki, Y. Yamakata, N. Chubachi, S.-I. Nitta and H. Hashimoto, “Transcutaneous DC-DC converter for totally 
implantable artificial heart using synchronous rectifier,” IEEE Transactions on Magnetics, vol. 32 , no. 5 , Sept. 1996, pp. 
5118 - 5120 
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Power Transformer

Reference: J. W. Coltman, “The Transformer (historical overview),” IEEE Industry Applications Magazine, vol. 8, no. 1, Jan.-
Feb. 2002, pp. 8-15
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Superconducting Transformer

Reference: W. Hassenzahl et. al., “Electric Power Applications of Superconductivity,”  Proceedings of the IEEE, vol. 92, no. 
10, October 2004, pp. 1655-1674
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Transformer Under No-Load Condition
By Faraday’s law: 

)cos(max

1
1

tN
dt
dN

dt
d

e

ωω

λ

Φ=

Φ
==

 

 
RMS value of e1: 

max
max

,1 2
2

2
Φ=

Φ
= fN

fN
E rms π

π  

 
If resistive drop in winding is 
negligible: 

fN
E rms

π2
,1

max =Φ  
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No-Load Phasor Diagram
• Winding current has harmonics, 

and fundamental is generally out 
of phase with respect to flux

• In-phase component is from 
core losses

• Magnetizing current is 90 
degrees out of phase

cc IEP θϕ cos1=
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Example:  Transformer Calculations
• Fitzgerald, Example 2.1.  In Example 1.8, the core loss 

and VA at Bmax = 1.5T and 60 Hz were found to be:  Pc = 
16W and VI = 20 VA with induced voltage 194V.  Find 
power factor, core loss current Ic and magnetizing current 
Im.
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Example:  Transformer Calculations --- Solution
Power factor: 

8.0
20
16)cos( === cPF θ  

 
Exciting current 

A
V
VAI 1.0

194
20

===ϕ  

 
Core loss component 

AIc 082.0
194
16

==  

 
Magnetizing component 

AII cm 060.0sin == θϕ  
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Ideal Transformer with Load
Ideal transformer: 

1

2

1

2

22
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N
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v
v

dt
dNv
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Φ
=

Φ
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By Ampere’s law: 
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2

2

1
2211 0

N
N

i
i
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(Also, by power balance, 

2211 iviv = ) 
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Impedance Transformation

2
2

1
1

ˆˆ V
N
N

V =  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
===

2
1

1

2

1

2

2

2

1

2
2

1

2
1

1ˆ
ˆ

ˆˆ
Z

V
N
N

N
N

Z
V

N
NI

N
NI  

 
Therefore, impedance at input terminals is: 
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Equivalent Circuits
• These 3 circuits have the same impedance as seen from 

the a-b terminals
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Example: Use of Equivalent Circuits
• Fitzgerald, Example 2.2
• (a) Draw equivalent circuit with series impedance 

referred to primary
• (b) For a primary voltage of 120VAC and a short at the 

output, find the primary current and the short circuit 
current at the output
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Example:  Impedance Transformation
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Example:  Input Current with Output Short Circuit
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Non-Ideal Effects in Transformers --- Magnetizing 
Inductance

• A real-world transformer doesn’t pass DC
• From either set of terminals, the impedance looks like an 

inductor if the other set of terminals is open-circuited
• Can model this as an ideal transformer with a magnetizing 

inductance added.
• The magnetizing current im produces the mutual flux which 

couples to the secondary
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Mutual and Leakage Flux
• Not all of the flux created by winding #1 links with winding #2.



Electromechanics Magnetics and Energy Conversion
2-173

Mutual and Leakage Flux
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Non-Ideal Effects in Transformers --- Leakage
• Not all of the flux created by winding #1 links with winding #2.
• Therefore, real-world voltage transformation is not exactly 

equal to the turns ratio, due to the voltage drops on Lk1 and 
Lk2
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Transformer Equivalent Circuits
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Example:  Use of Equivalent Circuits
• Fitzgerald, Example 2.3:  A 50-kVA 2400:240V 60 Hz 
distribution transformer has a leakage impedance of 
0.72+j0.92Ω in the high voltage winding and 0.0070 + 
j0.0090 Ω in the low-voltage winding.  The impedance Zϕ
of the shunt branch (equal to Rc +jXm in parallel) is 6.32 + 
j43.7 Ω when viewed from the low voltage side.

Draw the equivalent circuits referred to the high voltage 
side and the low voltage sides.

SOLUTION:
Note that N1:N2 is 1:10, so impedances step up and 
down by 100
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Example:  Solution
--- Leakage impedance of 
0.72+j0.92Ω in the high 
voltage winding and 
0.0070 + j0.0090 Ω in the 
low-voltage winding.  
--- The impedance Zϕ of 
the shunt branch (equal 
to Rc +jXm in parallel) is 
6.32 + j43.7 Ω when 
viewed from the low 
voltage side.
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Approximate Transformer Equivalent Circuits
• “Cantilever circuits”
• Ignoring voltage drop in primary or secondary leakage 

impedances
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Approximate Transformer Equivalent Circuits
• Circuit if we ignore the magnetizing inductance and core 

resistance

• Circuit if we further ignore the winding resistance
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Example:  Use of Cantilever Circuit
• Fitzgerald, Example 2.4

Using T-model: 

( ) 0315.09.239
10
12400ˆ

1
2 j

ZZ
Z

V
l

+=⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

ϕ

ϕ  

 
Using cantilever model: 

( ) 240
10
12400ˆ

2 =⎟
⎠
⎞

⎜
⎝
⎛=V  
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Example:  Find V2

• Fitzgerald, Example 2.5
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Example:  Find V2

From node equations: 
LLs IjXRIVV ˆˆˆˆ

2 ++=  
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Example:  Find V2

-We need length of vector Oa (which is V2) 
-We know length of vector Oc (which is 2400V) 

4.71)6.0)(42.3)(8.20()8.0)(72.1)(8.20(sincos =+=+= θθ IXIRab  
5.35sincos =−= θθ IRIXbc  

Solve for V2: 
VVVbcabV s 233)()( 2

222
2 =⇒=++  
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Transformer Testing to Determine Parameters
• By doing various tests on a transformer, we can 

determine the equivalent circuit parameters
• Testing includes open-circuit and short-circuit testing
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Short-Circuit Test
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Short-Circuit Testing

Normally: 
Lm >> Lk1, Lk2 and Rc >> Rw1, Rw2 

Using the simplified circuit, we can 
approximate: 

TEST

TEST
eq I

V
Z ≈  

2
'

21
TEST

SC
WWSC I

P
RRR =+=  

22

SCeqSC RZX −≈  
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Open-Circuit Testing
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Open-Circuit Testing
• There is no secondary current

TEST

TEST
m

OC

TEST
c

I
V

X

P
V

R

≈

≈
2
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Autotransformer
Conventional transformer

Connection as autotransformer

Autotransformer redrawn
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Staco Autotransformer

Reference:  Staco
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Autotransformer Drawing

Reference:  Staco



Electromechanics Magnetics and Energy Conversion
2-192

Autotransformer Brush
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Damaged Autotransformer
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Example:  Autotransformer
• Fitzgerald, Example 2.7
• 2400:240V 50-kVA transformer is connected as an 

autotransformer with ab being the 240V winding and bc is 
the 2400V winding.

(a) Compute the kVA rating
(b) Find currents at rated power
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Example:  Autotransformer Example --- Solution

For 50 kVA, rating of 240V winding is: 
A208240/50000 =  

 
The autotransformer VA rating is: 

kVAAkVIV HH 549)208)(64.2( ==  
 
Rated current at low-voltage winding: 

AII HL 229
2400
2640

=⎟
⎠
⎞

⎜
⎝
⎛=  
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Some Comments on Autotransformers
• Autotransformers differ from isolation transformers in that 

there is no isolation between primary and secondary
• However, this lack of isolation allows some of the 

transferred power to be conducted from primary to 
secondary instead of magnetic induction

• Autotransformers in general require less core material 
per kVA rating

• Autotransformers used where lack of isolation doesn’t 
pose a safety issue
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Example:  Magnetic Circuit Problem
• Fitzgerald, Problem 2.2
• A magnetic circuit with a  cross-sectional area of 15 cm2

is to be operated from a 120V RMS supply.  Calculate the 
number of turns required to achieve a peak magnetic flux 
density of 1.8 Tesla in the core



Electromechanics Magnetics and Energy Conversion
2-198

Example:  
Magnetic 

Circuit Problem 
--- Solution

Flux is:  )sin(max tωΦ=Φ  
 
The time rate of change of flux is: 

)cos(max t
dt
d ωωΦ=
Φ  

 
The time rate of change of flux linkage is: 

VtN
dt
dN

dt
d

=Φ=
Φ

= )cos(max ωωλ  

 
Let’s relate flux density to flux: 

max
max B
A

=
Φ  

 
So, we can solve for N 
 

7.166
)105.1)(8.1)(602(

)120)(2(2
3

max

=
××

== −πω AB
VN  

 
Round up to N = 167 
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Example:  Transformer Problem
• Fitzgerald, Problem 2.4
• A 100-Ohm resistor is connected to the secondary of an 

ideal transformer with a turns ratio of 1:4 (primary to 
secondary).  A 10V RMS, 1-kHz voltage source is 
connected to the primary.  Calculate the primary current 
and the voltage across the 100-Ohm resistor
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Example:  Transformer Problem --- Solution

We know that this is a step-up transformer, so 
V1 = 10V and V2 = 40V. 
 
We next find the secondary current I2 

AVI 4.0
100
40

2 =
Ω

=  

 
The voltage steps up, so the current steps down; 
hence 
I1 = 4I2 = 1.6A 
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3-Phase Connections of Transformers
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Example:  Finding 3-Phase Currents
• Problem: A three phase, 208V (line-line) Y connected 

load has:
– Zan = 3 + j4
– Zbn = 5
– Zcn = -5j

• Find
– (a) Phase voltages
– (b) Line and phase currents
– (c) Neutral currents
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Example:  Finding 3-Phase Currents --- Solution

Line-neutral voltages are found by taking the line-
line voltage and dividing by 3  

120
3

208
==−NLV  
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Example:  3-Phase Currents --- Solution

Line (also called phase) currents are found by taking the 
line-line voltages and dividing by impedance 

o
o

c

o
o

b

o
o

a

j
I

I

j
I

3024
)5(

240120

12024
)5(
120120

13.5324
)43(

0120

−∠=
−
∠

=

∠=
∠

=

−∠=
+
∠

=
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Example:  3-Phase Currents --- Solution
• Note that loads are unbalanced so there is a net neutral 

current

o
cban IIII 9.1554.25 ∠=++=
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480V Y System
• Line-line = 480V; line-neutral = 277V

Reference: Ralph Fehr, Industrial Power Distribution, Prentice Hall, 2002
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Delta System
• Line-line = 480V

Reference: Ralph Fehr, Industrial Power Distribution, Prentice Hall, 2002
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Instrument Transformer
• Used for protection, relaying, voltage or current monitoring, 

etc.
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Per-Unit System
• Computations in electric machines and transformers are 

often done using the “per-unit” system
• Actual circuit quantities (Watts, VArs, etc.) are scaled to 

the per-unit system
• This method allows removal of transformers from 

diagrams
• To convert to per-unit, 4 base quantities are established

– Base power VAbase
– Base voltage Vbase
– Base current Ibase
– Base impedance Zbase
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Example:  Per-Unit System
• Example: A system has Zbase = 10 Ω and Vbase = 400V.  

Find base VA and Ibase

• Solution:
– Ibase = Vbase/Zbase = 400/10 = 40A
– (VA)base = VbaseIbase = (400)(40) = 16 kVA
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Example:  Per-Unit System
• A 5 kVA, 400/200V transformer has 2 Ω reactance 

referred to the 200V side.  Express the transformer 
reactance in p.u.

• Solution:
– (VA)base = 5000
– Vbase = 200
– Ibase = (VA)base/Vbase = 5000/200 = 25A
– Zbase =Vbase/Ibase = 200/25 = 8 Ω
– Z = 2.0/8.0 = 0.25 p.u.
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Example:  Per-Unit Applied to Transformer
• Fitzgerald, Example 2.12
• Convert this circuit showing a 100 MVA transformer to the 

per-unit system
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Example:  Low-Voltage Side

Ω=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×
×

=

===

=
=

− 638.0
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)1099.7(

)(
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100)(

6

23

2
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BASEBASEBASE
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V

ZXR

kVV
MVAVA

 

 
In per-unit system: 
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Example:  High-Voltage Side

Ω=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×
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=
=

− 5.63
10100

)107.79(

)(

7.79
100)(

6

23

2

BASE

BASE
BASEBASEBASE

BASE

BASE

VA
V

ZXR

kVV
MVAVA
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Example:  Model
• Turns ratio is 1:1, so we can remove transformer
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Example:  Get Rid of 1:1 Transformer
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• Forces and torques
• Energy balance
• Determining magnetic forces and torques from energy
• Multiply-excited systems
• Forces and torques in systems with permanent magnets

Energy Conversion --- Overview
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• For determining the direction magnetic-field component of 
the Lorentz force F=q(v x B) = JxB.

Right-Hand Rule
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• Fitzgerald, Example 3.1
• Find θ-directed torque as a function of α

Example:  Single-Coil Rotor
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Example:  Single-Coil Rotor
For wire #1: 

αθ sin1 oIlBF −=  
 
For wire #2: 

αθ sin2 oIlBF −=  
 
Total torque (T = force × distance): 

RIlBT o αθ sin2−=  
 
What happens if B points left-right 
instead 
of up-down? 

RIlBT o αθ cos2−=  
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• This box can be used to model motors, actuators, lift 
magnets, etc.
• Note 2 electrical terminals (voltage and current) and 2 
mechanical terminals (force ffld and position x)
• The lossless magnetic energy storage system converts 
electrical energy to mechanical energy

Electromechanical Energy Conversion Device
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Interaction Between Electrical and Mechanical 
Terminals

WFLD = stored magnetic energy 
In words, the rate of change of magnetic energy equals 
the power in minus the mechanical work out 

dt
dxfei

dt
dW

fld
FLD −=  

 
By Faraday’s law, e = dλ/dt, so let’s rework: 

dt
dxf

dt
di

dt
dW

fld
FLD −=

λ  

 
Multiply through everywhere by dt: 

dxfiddW fldFLD −= λ  
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Interaction Between Electrical and Mechanical 
Terminals

In a lossless system, we can rewrite the energy 
balance: 

FLDMECHELEC dWdWdW +=  
 
Differential energy in: λiddWELEC =  
Differential work out: dxfdW fldMECH =  
Change in magnetic energy: FLDdW  
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• This solenoid is an example of a force-producing device

Force-Producing Device
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Energy
Thinking about energy, we start out with: 

dxfiddW fldFLD −= λ  
 
If magnetic energy storage is lossless, this is 
a conservative system and Wfld is determined
by state variables λ and x 
 
In a conservative system, the path you take to
do this integration doesn’t matter 
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Another Conservative System
• Roller coaster, ignoring friction, the path doesn’t 
matter.  Speed of both coasters is the same at the 
bottom of the hill
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• This illustrates lossless magnetic structure with external 
losses due to resistance

Magnetic Relay
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Integration Path for Finding Magnetic Stored 
Energy

∫∫ +=
bpath

FLD
apath

FLDooFLD dWdWxW
22

),(λ  

 
On path 2a, dλ = 0 and ffld = 0 since zero λ 
means zero magnetic force, therefore:  

λλλ
λ

dxixW oooFLD ),(),(
0∫=  
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Special Case --- Linear System
In the special case of a linear system, the 
flux linkage is proportional to current, or λ ∝ 
i. 

)(2
1

)(

),(),(

2

0

'
'

0

''

xL
d

xL

dxixWFLD

λλλ

λλλ

λ

λ

==

=

∫
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Example:  Relay with Movable Plunger
• Fitzgerald, Example 3.2
• Find magnetic stored energy WFLD as a function of x with      
I = 10A



Electromechanics Magnetics and Energy Conversion
2-231

Example:  Relay with Movable Plunger

)(2
1 2

xL
WFLD

λ
=  with I constant. 

We know that IxL )(=λ , so 

2
22

)(
2
1

)(
)(

2
1 IxL

xL
IxLWFLD ==  

I’ll give you that )1(
2

)(
2

d
xld

g
N

xL o −=
μ , 

so magnetic stored energy is: 
2

2

)1(
4

I
d
xld

g
N

W o
FLD −=

μ
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Determining Magnetic Force from Stored Energy
• Next, if we go to all 
this trouble to find 
stored energy, let’s 
figure out how to 
find forces from the 
energy (very 
important!)

Remember dxfiddW fldFLD −= λ  
 
Next, remember the “total differential” 
from calculus: 

2
.2

1
.1

21

12

),( dx
x
Fdx

x
FxxdF

constxconstx ==
∂
∂

+
∂
∂

=  

 
Let’s rewrite the stored energy 
expression: 

λ

λ
λ dx

W
d

d
W

dW FLD

x

FLD
FLD

∂
+

∂
=  

 
From this, we see that 

x

FLD

d
W

i
λ

∂
=  and 

λx
Wf FLD

fld ∂
∂

−=  
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Determining Magnetic Force from Energy
For linear systems with λ = L(x)I 

Energy 
)(2

1 2

xL
WFLD

λ
=  

 

Force: 

dx
xdL

xL

xLx
f

tcons

fld

)(
)(2

)(2
1

2

2
tan

2

λ

λ

λ

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=
=  

 
With λ = L(x)I 

dx
xdLIf fld
)(

2

2

=  
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Determining Magnetic Force from Energy
• The bottom line:  if your system is linear, and if you can 
calculate inductance as a function of position, then finding the 
force is pretty easy
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Example:  Curve Fit for Inductance of Solenoid 
with Plunger

• Fitzgerald, Example 3.3
• Assume that the following inductance vs. plunger position 
was measured.  We then run the solenoid with 0.75A current
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• We can fit a polynomial to the inductance, and use energy 
methods to find the plunger force as a function of position

Example:  Force as a Function of Position
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• Can solve this as before, by analogy

Torque in Magnetic Circuit

By analogy: 

θ
θ

d
dLIT fld

)(
2

2

=  
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Example:  Finding Torque
• Fitzgerald, Example 3.4

Assume L(θ) = Lo + L2cos(2θ) with Lo = 10.6 mH and L2 = 2.7 mH.  
Find the torque with I = 2A. 
 
Solution: 

( )

mN

LI
d

dLIT

−×−=

−+==

− )2sin(1008.1

)2sin(2
2

)(
2

)(

2

2

22

θ

θ
θ
θθ
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Example:  Finding Torque
• Fitzgerald, Practice Problem 3.4

Assume L(θ) = Lo + L2cos(2θ) + L4sin(4θ) with Lo = 25.4 mH, L2 = 8.3 mH 
and L4 = 1.8 mH.  Find the torque with I = 3.5A. 
 
Solution: 

mNT −+−= )4cos(044.0)2sin(1017.0)( θθθ  
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Another Example --- Torque vs. Rotor Angle
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Today’s Summary
• Today we’ve covered:

• Maxwell’s equations:  Ampere’s, Faraday’s and Gauss’ 
laws
• Soft magnetic materials (steels, etc.)
• Hard magnetic materials (permanent magnets)
• Basic transformers
• The per-unit system
• We started electromechanical conversion basics
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