Worcester Polytechnic Institute Department of Electrical and Computer Engineering EE529 --- Analog Circuits and Intuitive Design Methods Spring, 2009 COURSE GUIDELINES AND SYLLABUS

Lecturer:	Prof. Marc T. Thompson, AK316		
Email:	marctt@thompsonrd.com, marctt@aol.com		
Level:	Graduate level		
Lecture:	Thursday evenings, 6:00-8:50 on Worcester campus, AK233		
Course Secretary:	(508) 831-5231		
Marc Thompson WPI w	vebsite: <u>http://www.ece.wpi.edu/People/mtt.html</u>		
Marc Thompson busine	ess website: <u>http://www.thompsonrd.com</u>		

Philosophy

The application of some simple rules-of-thumb and design techniques is a possible first step to developing intuition into the behavior of complex electrical systems. This course outlines some ways of thinking about analog circuits and systems that hopefully will help to develop intuition.

The course is run as a graduate seminar, and discussion and debate is highly encouraged. The lectures are a mixture of instructional sessions covering new background material, and design case studies. Topics covered include: analog signal processing, transistor amplifier bandwidth analysis, switching transistor transient analysis, analog filter design, and feedback system design. Student assignments are a mixture of problem sets, and longer design problems.

Prerequisites

Permission of instructor is required. Prerequisites are basic background in device physics, transistor amplifier and operational amplifier design. Control systems. Electromagnetism. Access to web searching and PSPICE simulation tools. It is assumed that the student also has the prerequisite background in Laplace domain analysis, Bode plots, pole-zero analysis, and the like.

Course load

Lectures

Attendance in lecture and class participation is required. It is expected that the lecture will be very interactive with a lively "give-and-take." The classes will be a mixture of standard lecture format and Socratic question and answer sections.

Reading assignments

Reading will be a mixture of the course textbook chapters, Powerpoint slide presentations, technical papers and manufacturers' application notes.

Problem sets

Homework assignments will be given and due the following week. Material covered will be derived from lecture topics and reading assignments. Some homework assignments may contain a lab or simulation (SPICE or MATLAB component). Late problem sets will not be accepted.

Exams

There will be 2 exams.

Design problems

Several design problems will be given. The design problem assignments will be narrower in scope than the homework assignments and will require significant design effort, simulations and/or lab work, and a written report. More information will be given later on in the term. Late design problems will not be accepted.

10/24/08

Grading

Grading will be done with the *approximate* percentage distribution:

- Homework: 20%
- Design problems: 50%
- Classroom participation: 10%
- Exams: 20%

Comments on grading

- The grader will not search for your answers.
- Answer questions in a clear, concise manner.
- If graphs are required, make sure that you label all axes.
- If we can't find your answers easily, you don't get the credit!

Required text

- Marc T. Thompson, *Intuitive Analog Circuit Design*, Newnes, 2006. Errata sheet will be emailed out separately.
- Course Powerpoint presentations are available on MyWPI.
- Other industry application notes are available on the MyWPI course website.

Other recommended texts

Floyd M. Gardner, <u>Phaselock Techniques</u>, 2d edition, John Wiley, 1979
Paul R. Gray and Robert G. Meyer, <u>Analysis and Design of Analog Integrated Circuits</u>, 2d edition, John Wiley, 1984. *Contains other information on method of open circuit time constants*.
Richard S. Muller and Theodore I. Kamins, <u>Device Electronics for Integrated Circuits</u>, 2d edition, John Wiley, 1986
S. M. Sze, <u>Physics of Semiconductor Devices</u>, John Wiley, 1981
D'Arcy W. Thompson, <u>On Growth and Form</u>, Cambridge University Press, 1961

Other references

MicroSim website, <u>http://www.microsim.com</u> MicroSim <u>Demo Version of PSPICE, version 8</u> Marc Thompson links website, <u>http://www.thompsonrd.com/links.htm</u> PSIM evaluation software

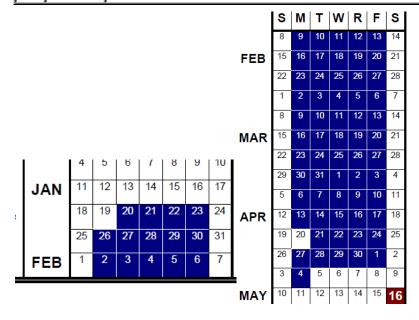
Late policy

Late work will not be accepted, unless there is a family emergency.

Collaboration and academic honesty¹

All the rules of WPI's <u>Academic Honesty Policy</u> will be in effect (http://www.wpi.edu/Pubs/Policies/Judicial/sect5.html). You **must** review them and be familiar with them. They describe procedures that will be taken if dishonesty is suspected. You may not copy from any source (person, book, old homework, web etc.). If you are not sure whether your or a classmate's behavior follows the Honesty Policies, be sure to ask. **The use of old homework sets, course "bibles", etc. is explicitly not allowed.**

¹ Excerpted from Prof. Fred Looft's Academic Honesty webpage, http://ece.wpi.edu/~fjlooft/honesty.htm


10/24/08

Syllabus (subject to change)

#	DATE	LECTURE MATERIAL COVERED	ASSIGNMENTS
1	1/22/09	INTRODUCTIONCourse overview and philosophy, syllabus	 PROBLEM SET #1 Book, Chapters 1, 2 and 16
		Academic honesty	• Powerpoint notes 00, 01, 02 and
		Scaling laws	parts of 16
		• Energy methods applied to electrical and mechanical circuits	• Jezierski "On Electrical
		Oscillation modes of mechanical and LC circuits Devium of signal any sessing basiss	Analogues of Mechatronic Systems"
	1/29/09	Review of signal processing basicsREVIEW OF SEMICONDUCTOR PHYSICS	
2	1/29/09	The ideal diode	 PROBLEM SET #1 due PROBLEM SET #2
		 Non-ideal diode 	 PROBLEM SET #2 Book, Chapters 3 and 4,
		Load lines	selected datasheets
		 Reading a diode datasheet1N914, 1N4001, Schottky 	Powerpoints 03, 04
		Bipolar transistor (BJT) basics	• W. Shockley "Transistor
		Transistor large signal models	technology evokes new physics,"
		Transistor small-signal models	(Nobel prize lecture, 1956)
		• Low frequency	• Brinkman "A history of the
		• High frequency	invention of the transistor and where it will lead us"
		• Reading transistor datasheets2N3904, 2N3906, 2N2222, MPSH81	
3	2/5/09	BIASING AND TRANSISTOR BUILDING BLOCKS	• PROBLEM SET #2 due
		Basics of biasing	• PROBLEM SET #3
		 Common-emitter amplifier gain and bandwidth calculations Closed-form 	Book, Chapter 5
		Closed-formMiller approximation	• Powerpoints 05A – 05E
		 Emitter follower 	• Phang: "Measurement of hybrid pi parameters"
		Differential amplifier	Thornton: "Limitations of
		Peaking amplifier	transistor DC amplifiers"
		 Video amplifier design example 	• Lundberg"Origin of the Miller
		• Differential amplifiers	effect (with original paper)"
		Half circuits for common-mode and differential mode	
		• CMRR	
4	2/12/09	AMPLIFIER BANDWIDTH ESTIMATION TECHNIQUES	PROBLEM SET #3 due
		Open-circuit time constants	• DESIGN PROBLEM #1 (2
		• R/C network bandwidth estimation	weeks, high frequency amplifier
		Common-emitter amplifier revisited	design) • Book, Chapter 6
		 Emitter follower bandwidth estimate BIT emplifier design using OCTCs as a design aid 	Book, Chapter 6Powerpoint 06
		 BJT amplifier design using OCTCs as a design aid Iterative design case study: Gain of 100 amplifier 	 Mazhari "On the Estimation of
		• Relative design case study. Gain of 100 amplifier	Frequency Response in Amplifiers
			Using Miller's Theorem"
5	2/19/09	ADVANCED AMPLIFIER TECHNIQUES	Book, Chapter 7
		Worst case OCTCs	Powepoint 07A, 07B
		• Common-emitter amplifier with emitter degeneration	"Kozikowski Analysis and
		• Differential amplifier with emitter degeneration	design of emitter followers at high
		• Emitter follower terminal impedances; effects of capacitive loading	frequencies"
		Bootstrapping Another OCTC exemple with bootstrap her dwidth enhancement	
		 Another OCTC example with bootstrap bandwidth enhancement Dealking amplifier revisited with finite base spreading resistance r 	
		 Peaking amplifier revisited with finite base spreading resistance r_x Common base amplifier 	
		Common-base amplifierCurrent-switching amplifier	
		Current-switching amplifierPole-splitting	
		 Short-circuit time constants 	
		Theoretical background	

		SCTC design example	
6	2/26/09	 EXAM #1 BJT HIGH GAIN STAGES AND CURRENT MIRRORS Base-width modulation Extended hybrid-pi model High gain stages Current mirrors 	 DESIGN PROBLEM #1 due PS#4 out Book Chapter 8 Powerpoint 08A, 08B Widlar "Some Circuit Design Techniques for Linear Integrated Circuits" Thompson "High gain amplifiers" Early "Effects of space-charge layer widening in junction transistors"
7	3/5/09	CMOS AMPLIFIERS THE CHARGE CONTROL MODEL	 Book, Chapter 9 Powerpoint 09, 10A PS#4 due PS#5 out Mohan "Bandwidth enhancement in CMOS with optimized on-chip inductors" Analog Devices ADG601 analog switch datasheet
8	3/12/09	THE CHARGE CONTROL MODEL FOR SWITCHING TRANSISTOR DESIGN	 Book, Chapter 10 Powerpoint 10A, 10B DESIGN PROBLEM #2 (2 weeks, charge control) PS#5 due Sparkes "A Study of the Charge Control Parameters of Transistors" Ebers and Moll "Large Signal Behavior of Junction Transistors"
9	3/19/09	CHARGE CONTROL EXAMPLES Laser driver design example BEGIN FEEDBACK SYSTEMS	 Book, Chapter 10 Powerpoint 10B, 10C, 11A Thompson "High Power Laser Driver"
10	3/26/09	 FEEDBACK SYSTEMS, STABILITY AND COMPENSATION Stability The phase margin/gain margin test Examples 	 Book, Chapter 11 Powerpoint 11A, 11B DESIGN PROBLEM #2 due PS#6 out Texas Instruments "Opamp stability and input capacitance"
11	4/2/09	 OP-AMPS IDEAL AND NOT Basic op-amp topologies Non-ideal op-amp Applications 	 Book, Chapters 12 Powerpoint 12A, 12B, 12C PS#6 due DESIGN PROBLEM #3 out (2 weeks, feedback) Solomon "The monolithic opamp - a tutorial study" Boyle "Macromodeling of opamps" Widlar "Design Techniques for Monolithic Operational Amplifiers" Widlar "A Monolithic Power OpAmp"

			• Texas Instruments "Understanding Operational Amplifier Specifications"
12	4/9/09	 CURRENT FEEDBACK OP-AMPS Topology of the CFA Practical differences between voltage feedback and current feedback amplifiers real-world issues BEGIN ANALOG FILTERS 	 Book, Chapter 13, 14 Powerpoint 13, 14 Sauerwald "Current Feedback and Voltage Feedback Amplifiers" Lillis Patent "Complementary Current Mirror"
13	4/16/09	 ANALOG FILTERS Filter types and tradeoffs Butterworth Bessel Chebyshev Elliptic Allpass filters Filter response in the time domain Filter response in the frequency domain Group delay Group delay equalization 	 Book, Chapter 14 Powerpoint 14 DESIGN PROBLEM #3 due DESIGN PROBLEM #4 out (2 weeks, analog filters) MTT papers: "Designing Video Circuits" parts 1, 2, 3 Marshak "A Bessel Rational Filter" Texas Instruments "Active lowpass filter design"
14	4/23/09 4/30/09	NO CLASS THIS WEEK EXAM #2 PASSIVE COMPONENTS ISSUES IN PC BOARD DESIGN OTHER DESIGN TECHNIQUES AND LOOSE-ENDS	 Book, Chapters 15, 16 Powerpoint 15, 16 DESIGN PROBLEM #4 due Disanto "Proper PC board layout improves dynamic range" Texas Instruments "The PCB is a component of op amp design" Analog Devices "Grounding for low and high frequency circuits" Analog Devices "Avoiding passive component pitfalls" Analog Devices "A Practical Guide to High Speed PCB Layout"

