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Summary

 Review of 1st-order systems

* Relationship between bandwidth and risetime

e 2" order systems

 Resonance, damping and quality factor
 Energy methods

« Transfer functions, pole/zero plots and Bode plots
e (Calculating risetime for systems in cascade

« Comments on PSPICE
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Laplace Notation

Basic idea: Laplace transform converts differential
equation to algebraic equation d

§= —
dt

Laplace method is used in sinusoidal steady state after
all startup transients have died out

Circuit domain Laplace (s) domain
Resistance, R R
Inductance L Ls
Capacitance C 1
Cs

Circuit
H1
My # O +
C B
T 1

Laplace transformed circuit

v(s) ﬁ) i v(s
1f (Cs) j_
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System Function H(s)

* Find “transfer function” H(s) (also called “transfer
function”) by solving Laplace transformed circuit

v{s} 4% V {5
1! Cs) —

Vo (s) _ R, +& _ RGCs+1
V. (S) R1+R2+Ci (R,+R,)Cs+1
S

H(s) =
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Does this System Function Make Sense

Intuitively?
1
)= Bte | RCs o+
A _1"'{3}_5{' I {R +R,)Cs+1 VO CF VoS
¢ Tt RE +— _ ]1((3 )
Cs —_|_ i
At very low frequencies (s =20), the capacitor is an
open-circuit: o
HI { A=

At very high frequencies (s =), the capacitor is an
short-circuit:
R,

H|{“}H {R +R}
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Does this System Function Make Sense

Intuitively?
' R +L 0 +
H,(s)= = &) 7o RG] v@ﬁ) V.8
V(s I (R +R,)Cs+]1 _
{ J R _|_R _|_a { I 2) 1—]‘(@ j_
_ ]
e (R +R,)C
— 1 O % a
ZEro - -I 1
ke "RC (R +R,C
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First-Order System

« \oltage-driven RC lowpass filter

A
-t J WV ! +
V,()=V(1-er) v () L o owi
ARV | -
| (t)=—¢" = -
(=0

r=RC Timeconstant , -1 Bandwidth [Hz]
T
rg =2.2r  Risetime f, =< Bandwidth [rad/s]
. 0.35 o

T
R
fh
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Another First-Order System

e Current-driven RC

| - -
__t -II'I-'I—1':'!n_. i |if_::| it =] _
v.(t) = IR(l—€ ") | S 7
_t 1
i ()=1e- ] S
r=RC
@ _ 2 0.35
h — :
T, =227 ‘ TR =
f, =0 “
.=
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First-Order Systems --- Some Detalls

« Frequency response:
1

75+ 1

H(s)=
 Phase response:

/H(s)=—tan™" (wr)

e -3 dB bandwidth: ]

Iifl . |-||--"r|II
s R

2ar
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10 - 90% Risetime

 Defined as the time it takes a step response to transition
from 10% of final value to 90% of final value
e This plot is for a first-order system with no overshoot or

ringing

- TH.—-—
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Relationship Between Risetime and Bandwidth

e Exact for a first-order system:

(.35
Ty = rE

L) r.I

* Approximate for higher-order systems
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First-Order System Step and Frequency

Response

Step Resporse
1
I
08
Q
8 06
E .
02
0
0 2 3 4
Time (sec.)
Bode Diagranms
@ o
) . &
q) .
3 -3-dB point
§ = 1 rad/sec
20
? = Angle = -45 deg
S \@B point -
§ o
o 80 |
-1 (0}
10 10
Frequerncy (rad/sec)
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“Group Delay”

1 |
H (S) - s H{jo)= jor +1
S+1 .
H(jo) =
J(@7)?+1

ZH(jo) =—tan*(w7)
—d/H(jo) _ ¢

Cle)= dw 1+(a)r)2

Group delay is a measure of how much time delay the frequency
components in a signal undergo. Mathematically, the group delay of a
system is the negative derivative of the phase with respect to omega. To
find group delay for the first-order system, we make use of the identity:

d 1) 1 du
d_x(tan 1u)_1+ u® dx
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First-Order System --- Low and High Frequency
Behavior

e Closed-form solution for frequency response:
1
s+1
1
jor +1
1

J(@r)? +1
ZH(jo) = -tan™(wr7)

H(s) =

H(Jo) =

H(jo)|=

 How does this response behave at frequencies well above
and well below the pole frequency ?
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First-Order System --- High Frequency Behavior

For high frequencies, where ot >>1

tani(x) = n/2 — 1/x + 1/(3x3) - ... forx > 1

1

T

. r 1
ZH (Ja))a)r»l ~ _E_i_g

H(jw)

N/
"N/
wT>>1
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First-Order System --- Low Frequency Behavior

For low freqguencies, where ot <<1

tan1(x) = x —x3/3 + x>/5 - ... for x < 1 and \/11—)( zl—g forx <<'1
. 1
‘H(J(t)) wr<<1 zl_E(wr)z zl
/H(jw), ..., = —oT

Well below the pole frequency, the magnitude is approximately 1.
The phase is approximately linear phase, behaving like an

approximate time delay. “Group delay” is negative derivative of angle
with respect to frequency, or:

G(jw)

a)r<<l
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Step Response of Single Pole

 Single pole at -1 rad/sec.
* Note that risetime = 2.2 sec

10/30/2008

Amplitude

0.9

0.8

0.7

06

05

04

0.3

02

0.1

Step Resporse
Step resporse of single pole at -1 1/s

—
10-90% risetime
= 2.2 sec
>
0 1 2 3 4
Time (sec.)
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Step Response of Single Pole with High
Frequency Pole Added

e Poles at -1 rad/sec. and -10 rad/sec.
* Note the time delay of approximately 0.1 sec.

Step Response
Conpare to systemwithreal-axis poles at -1 and -101/s

|

09

08

0.7

06

% 05 X
IS
< \
0. \
/ System with extra pole added
03
i

Time (sec.)
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Bode Plot Single Pole with High Frequency Pole
Added

e Poles at -1 rad/sec. and -10 rad/sec.

Comrpare to systemwithreal-axis poles at -1 and -10 1/s

Slggle pole Single pole +

_additional high freq.

| / pole

Phase (deg); Magnitude (dB)

-1 0 1 2
10 10 10 10

Frequercy (rad/sec)
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Second-Order Mechanical System

k
M
Ty

Spring force: f, = —kv

d*y
Newton’s law for moving mass: f, =—kyv= ,-wf—r-j

’ L

Differential equation for mass motion: J'Wﬂ-l—ﬁf_\‘: 0

dr*
Guess a solution of the form:  y(r)= Y sin{wr)
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Second-Order Mechanical System

Ty

v(f)=Y, sin(wr)

Put this proposed solution into the differential equation:
M (—w?Y, sin (wt)) + k(Y, sin(wr)) =0
This solution works if: |'T

Y]
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Second-Order Electrical System

R L
?A/m'_ﬂﬁ-
V;' Vo
::C j _
1
H (S) _ Vo (S) _ Cs _ 1 _ 1 _ a)r?
2 2 2 2
Vi(S) Ro|gs + LCS*+RCs+1 s L268 ST 2Aosto;
Cs a)r? o,
1

Natural frequency @, = Jic

Damping ratio _ORC TR IR
Ping T T2 2z
C
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Second-Order System Freguency Response
1

H(Jo) =—
2jco (,_o°
0, 0)2
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Second-Order System Freguency Response

Frequency response for natural frequency = 1 and various danping ratios

30
- / \\4\ Resonance

Phase (deg); Magnitude (dB)
5

-100

-150 \

-1 0 1
10 10 10

Frequercy (rad/sec)

1
M = for ¢ <0.707
®, = w,1- 257 for ¢ <0.707 P
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Resonant Circuilt --- Pole/Zero Plots

jo

+ jo,

- ja)n

Zero damping
c=0

jo

x*
Q

2 poles

Critical damping

G=1
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Second-Order System Frequency Response at

Natural Freqguency

* Now, what happens if we excite this system exactly at the
natural frequency, or o = ®,. ? The response is:

HGE),.,
2

ZH (s) —

O=w,
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Quality Factor, or “Q”

Quality factor is defined as:

Estored

P

w

ISS

where Esioreqg IS the peak stored energy in the system and Pyiss
IS the average power dissipation.
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Q of Series Resonant RLC

1
L R O=—F—
AL AAA, A LC

CE :luﬁk

stored
2
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Q of Parallel Resonant RLC

rlll-
O
|
|

10/30/2008

1
0=——
A LC
1.2
Estored = E CVpk
2
I:)dis.s. Ev_pk
2 R
(1 .,
Q_( 1 joVpk R R
JLC ) 1V \F Z,
. 2 R ) C
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Relationship Between Damping Ratio and
“Quality Factor” Q

e A second order system can also be characterized by it's
“Quality Factor” or Q.

H(s)|  =-=Q
v 26

e Use Q in transfer function of series resonant circuit:

1 1
H(s)= s* 245 T s
5 +1 —+——+1
a)n a)n a)n a)n
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Series Resonant Circuit at Resonance
The magnitude of this transfer function is:

1

5 2 2
0, 0,
a)n an
Exactly at resonance (o = o), the magnitude of the transfer
function is:

H(s)|=

HE),., =Q

10/30/2008 Signal Processing Basics
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Second-Order System Step Response
« Shown for varying values of damping ratio.

Step Resporse ] ) )
Step response for natural frequency = 1 and various danping ratios

2

18 f\Da ping ratio = 0.1

/ - /

/ \ /

— \ /)
: /) ——— W~ 7

Iy ]
\—"/

Time (sec.)
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Second-Order System Step Response

StepFaasporse
se for nal jUenC

various danpir

1_8 = i é i i
16 ; ; ; ;
14l ! ! !
12 /\

1 X S S B

]

0.8
0.6
0_4 = i 3 H i
0.2

or I i I I I i I i I

(0] 1 2 3 6 7 8 9

Time (sec.)

—gm,t 1— 2 W, = —F—
v, (1) =1- ° sin a)dt+tan1[ ° J LC

Vl—g2

Wy = O, 1-— gz Damped natural frequency 2

Anplitude
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Logarithmic Decrement

 Method of
estimating
damping ratio
based on
measurement

10/30/2008

A

xit) *1

x, Ce ™ sin(a,t, +¢)

il
X, Ce ™ sin(w,t, +¢)
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Logarithmic Decrement (cont.)

« Simplify:
pity ot xm‘ ‘o

X, e

X_2 - e—ga)n (L +Tp) . "
« T, = oscillation period - LN

= 2n)/o, v \/ :
« Simplify again

ﬁ:egwnTD ‘

X2

sides: v

» Take log of both In[le
X2

2rg
=5_§a)nTD_§£ JTD_[ j
\/1—9‘2 l—g2
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Logarithmic Decrement (cont.)

« The logarithmic decrement 6 is the natural log of the ratio
of any two successive oscillation amplitudes.
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Logarithmic Decrement (cont.)

« Comment: If we i
measure how the e
amplitude decreased
cycle-by-cycle, we
can find damping

ratio \/vvuvg

« Example: In afree

vibration test, the Y

ratio of amplitudes is

2.5to1o0n

successive 25 o

oscillations... 9= '”(TJ =0.916= ( ) ] > J = ¢=0.145
—6
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Logarithmic Decrement (cont.)
 If damping ratio is very low,

X 27g
o=In = |= ~ 27C
(ij [\/1—§2]

* In the case of low damping, it may not be easy to make
measurement of successive oscillations. We can make
measurements at time t, and at N cycles later. Note that:

69 b b e

« Take log of both sides

In( X jzIn[ﬁjﬂn[ﬁjﬂn[ﬁjnoﬂn[ Xy ]=N5
XN+1 X2 X3 x4 XN+1

10/30/2008 Signal Processing Basics 38




Logarithmic Decrement (cont.)
« Take log of both sides

In( X ]zIn[ﬁjﬂn[ﬁjﬂn[ﬁjnoﬂn[ Xy ]=N5
XN+1 X2 X3 X4 XN+1

« This means we can find the logarithmic decrement as:

o=l

10/30/2008 Signal Processing Basics
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A Potpourri of Resonant Circuits

« Both damped and undamped
 All circuits simulated with PSIM

10/30/2008 Signal Processing Basics
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Example 1: Undamped Resonant Circuit

« L=1/(2rn); C=1/(2r). Initial conditions: capacitor voltage

= 0 and inductor current = 1 Amp

Initial walues: I(L1)=1; %(C1)=0

L1
0.159
o
B i T T -
—
0.159

PZIM file: Undamped resonant circuit in inttial inductor current
ach

10/30/2008 Signal Processing Basics
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Example 1: What Do We Know About This

Circult?
« L=1/(2n); C=1/(2n)
« Z,=10hm
* o, =2nrad/sec;f,=1Hz

Initial walues: I[L11=1; %(C1)=0

L1

0159
“io
YT -

—| =1
0.1:39

PZIM file: Undamped resonant circult ininitial inductor current
ach

10/30/2008 Signal Processing Basics
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Example 1: Undamped Resonant Circuit

Response
. L=1/(2n); C = 1/(2n)

Initial values: KL1)=1; “i(C1)=0

(L1

L1

0159 @ 1.00
o
0.50

‘Lm 0.0
0159
I -0.a0

- -1.00

PSIM file: Undamped resonant circuit inintial inductar current
zch

1.00
0a0
0.0
-0.50
-1.00

Tirme (=)

* Note ratio of voltage/current = 1 ohm
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Example 1. Series Resonant Step Response

« L=1/(2rn); C=1/(2n). Assume zero initial conditions

L1
0.159
Wi
A .
WETEPT |
10 @ — 1
0.159

P=IM file: Undamped resonant circut step responze . zch
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Example 1. Series Resonant Step Response

« Z,=10hm
« Natural frequency: o, = 2r rad/sec; f, =1 Hz
L1
0.158 @
W0
a'a'a'sl -
WESTEPT |
10 T 1

0.1:39

P=IM file: Undamped resonant circuit step response.s=ch
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Example 1. Series Resonant Step Response

« Z,=10hm
* o, =2nrad/sec;f,=1Hz

——————————————————————————————————————————————————————————————————————————————————————————————————————

1000 |t
7T S SRR Y S, S0 S I A SN S SO S

00 oo T —— .. e -

Time ()
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Example 1. Series Resonant Step Response

« What is inductor current? Remember Z, = 1 Ohm
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* What is inductor current? Remember Z_, =1 Ohm

20.00

145.00

10.00

5.00

0.0

1000 f---

5.00
0.0
-5.00

-10.00

10/30/2008

Example 1: Series Resonant Step
Response

Wi

""""""""" Peakpea—ZUV

0.0 1.00 2.00 3.00 4.00 .00
Time (=)

Signal Processing Basics
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Example 2: Now Add 0.1 Q2 Resistor

L1 o

01549 04
Wi
L= L= .

-

WSTEP
10 — Z1
0.1549

P=IM file: Damped series resonant circuit 1 step response.zch

10/30/2008 Signal Processing Basics
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Example 2: Now Add 0.1 Q Resistor

« R<</Z, sodamping is small

Wi

20.00

15.00

10.00

5.00

0.0
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Example 2: Now Add 0.1 Q Resistor

Yo

20,00

15.00

10.00

5.00

0.0

10.00

5.00

n.a

-6.00

-10.00

Time (s}
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Example 3: Changethe 0.1 Qto 1 Q

« R=Z,Iin this case
L1

0.159 1
Wi
;ﬂnw v

WSTERT L
10 C) — =1
0.159

PZIM file: Damped zeries resonant circut? step responzse.zch

10/30/2008 Signal Processing Basics
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Example 3: Changethe 0.1 Qto 1 Q

10/30/2008

12.00

10.00

8.00

6.00

4.00

2.00

0.0

6.00
5.00
4.00
3.00
2.00
1.00
0.0
-1.00

Yo
0.0 1.00 2.00 3.00 4.00 5.00

Time (g}
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Example 4: Changethe 1 Q2Qto 10 Q

« R>>/Z_in this case

L1 o

0.139 10
WD
Wﬂ_"fm ’-
WSTEP1 -
10 QD m—
0.159

P=IM file: Damped zeries resonant circuits step response 2ch

10/30/2008 Signal Processing Basics

54



Example 4: Series Resonant Step Response

« What's the initial inductor current, approximately (and
why)?
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Example 4: Series Resonant Step Response

 What's the initial inductor current, approximately?

Wi

10.00

g.00

.00

4.00

2.00

0.0

1.00

n.sn

0.60

0.40

n.20

0.o

Tirme (g}
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Example 4: Response for R >> Z_

« At low frequencies, this behaves like an RC lowpass filter

« At high frequencies, when capacitor is almost a short, this
behaves as a LPF with L/R time constant

 Why is this?
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Second Order System --- Pole Location Variation
with Damping

Critically
Very underdamped damped

Overdamped

jo jo
jo
+ o,

o X (o)

2 poles

- ja)n
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Overdamped Case
1

LCs*+RCs+1
Overdamped

At low frequencies, for RCs >> LCs?, jo
or R >> Ls, then ...

1

H(s) =

H(s) ~

RCs+1 X X

At high frequencies, with RCs>>1,
then

H(s) ~

1
: ~
LCs? + RCs RCS(:; - 1)
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Example 5. Series Resonant Circuit with
Diode

« Q: With a positive voltage step, what does the diode do in
this circuit?

L1 1

0.159 0 00
W
= = - -
WeaTEP

10 T <1 Sy

0.1:349

PZ=IM file; Series resonant circut weith diode
=ch
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Example 5. Series Resonant Circuit with
Diode

...It's always reverse biased

Wi

* A: Nothing

L1 -
0154 o001

LI A A

WETEP1 - l

10 1
In 159

PZIM file: Seties resonant circuit with diode1
zch

10/30/2008

20.00

15.00

10.00

5.00

n.o 1.00 2.00 3.00 4.00 5.00
Time (53
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Example 6: Now, Flip the Diode
« Q: What does the diode do in this circuit?

L1 B

0.1:59 0.001
Wi
Jﬂﬁﬂ% ’
WETEP1 - |
0 (D Toa Y

F=IM file: Series resonant circuit swith diode2
=zch

10/30/2008 Signal Processing Basics
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Example 6: Series Resonant Circuit with

Diode

* A: It shorts out the capacitor; the circuit behaves like a
series LR circuit with L/R time constant 159 sec.

L1 R
0154 0001

A Ay p—

WSTER1 [ l

10 1
Im 59

PZIM file: Series resonant circuit with diode?
zch

10/30/2008

10.00K

8.00kK

6.008K

4.00k

2.00kK

0.0k

0.0 0.20 0.40 0.60 0.a0 1.00
Time (Ks)
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Example 7. Second-Order System Step

Response, with Extra Pole

» Second order system with o, = 1 r/s, damping ratio = 0.5
e Extra pole added at -10 r/s

Step Response )
Conrpare step response of wn=1, danp=0.5 2nd order systemwith pole added at -10/s

N
/ \ Effects of extra pole

/

Time (sec.)
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Example 8: Second-Order System Step
Response, with Extra Pole

Step Resporse .
Conpare step response of w1, damp=0.5 2nd order systemwith pole added at -2 1/s

e Second order
system with o, =

1 r/s, damping

ratio = 0.5
 Extra pole

added at -2 r/s

mplitud
\

Time (sec)
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Widely-Spaced Pole Approximation

For a transfer function of the form:

1
s*+As+B

If the poles are on the real axis and are widely spaced, we can
approximate them by:

Sfast ~—A
Sa.. = —B/A

slow

10/30/2008 Signal Processing Basics
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H (s)

Widely-Spaced Pole Approximation

» Assume that we have 3 real-axis poles

1 1
- (r,5+1) (7,5 +1)(7,5+1) B 11727383 + (rlrz + 17,7, + 7,7, )52 + (rl +7,+7, )S +1
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Widely-Spaced Pole Approximation

 \We can re-write this transfer function:

ft‘u 1
H(s) = 3 2
a,S” +a,s"+a,S+1
-t X X X o a3 — T12'22'3
1 1 1
s T Ty d, =T, 7T, + 1,7, + 7,7,

A =7,+7, +17,4
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Widely-Spaced Pole Approximation

* Pole locations can be approximated if the poles are
widely spaced:

1 1 1
Piow ®—— =~ ~
CH T, +7,+ 7, T,
) a T,T, + T, T, + 7,7, 7,7, 1
high =~ — = — N — ~——
d, 147,75 117,75 (%
L& o+, 1 ~_i
pmedlum ~ ~ ~

a2 T\ T, T T Ty +T,7, 7,7, (%
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Widely-Spaced Pole Approximation

* In the general case with k poles, if they are widely
spaced and on the real axis:

a‘k—l

10/30/2008 Signal Processing Basics
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Widely-Spaced Pole Approximation ---

Sanity Check

e Examine system with poles at -1, -10, -100, -1000
and -10000 r/s

1
H(s) =
(5) 10°s° +1.111x10°s* +1.122x10°s> +1.122x10 s? +1.111s +1
1.111x10°®
P ~ — T ~-11110r/s
-3
P, z—1'122><10_6 ~-1,010 r/s
1.111x10

__L122x10% o * The
approximation does

Ps ™ = 102 x10°

o ~—— 1 99 /s adecent job
° 1.122x107
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~Undamped Resonant Circuit

_L> di, _ Y dth _CI
N dt L
2 -
v, 1c L dve _ 1di, _ v
T dt? C dt LC

Guess that the voltage v(t) is sinusoidal with v(t) = VeSinat. Putting this
Into the equation for capacitor voltage results in:

i 1 .
— w?sin(at) = ———sin(wt
(at) C (at)

This means that the resonant frequency is the standard (as expected)
resonance:

0 = —
LC
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Energy Methods

Storage Mode Relationship Comments
Capacitor/electric field 1 ..,
storage Eorec = ECV

Inductor/magnetic field
storage

2
E —1|_|2=jB dv

mag ~ A

244,
Kinetic energy E - 1 M2
==
2
Rotary energy c 1 Lo | = mags moment of inertia
r (kg- m)
Spring e 21 o2 Kk = spring constant (N/m)
spring 2
Potential energy AE, = MgAh Ah = height change
Thermal energy AE. —C. AT Cty = thermal capacitance
T = ~TH

(JIK)

10/30/2008
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Energy Methods

By using energy methods we can find the ratio of maximum capacitor voltage
to maximum inductor current. Assuming that the capacitor is initially charged
to V, volts, and remembering that capacitor stored energy E. = %CV? and
inductor stored energy is E, = %LI%, we can write the following:

Tovzlype
2 2
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Energy Methods

What does this mean about the magnitude of the inductor current ? Well, we can
solve for the ratio of V,/l, resulting in:

The term “Z," is defined as the characteristic impedance of a resonant circuit. Let’'s
assume that we have an inductor-capacitor circuit with C = 1 microFarad and L =1
microHenry. This means that the resonant frequency is 10° radians/second (or
166.7 kHz) and that the characteristic impedance is 1 Ohm.
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Example 9: Simulation

e Initial conditions at t = 0: capacitor
v. 1lc L Vvoltage = 1; inductor current = 0.

Inductor Current

______________________________________________________________________
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Transfer Functions, Pole-Zero and Bode

Plots
System Type |Transfer Function H(s)| Pole/Zero Plot Bode Plot
Stngle Pole 1 Ju [HGe)
. =
g +1 _—\\
L , L
- M
o
45--_l
01 S
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Transfer Functions, Pole-Zero and Bode
Plots
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Transfer Functions, Pole-Zero and Bode
Plots
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Risetime for Systems in Cascade

V. —p a . a, oo o—Pp a —> Vv,

For multiple systems in cascade, the risetimes do not simply add; for instance, for
N systems wired in series, each with its own risetime trs, Tr2, ... TrN, the overall
risetime of the cascade 1R is:

2 2 2 2
TR N\/TR1+TR2 +Try+ - Try

Note that this equation works if each system is buffered/isolated from the next
sytem; i.e. the systems don’t load each other down.
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Example 10: Risetime for Systems in Cascade

For vo1:
Tp = 2.2RC = (2.2)(1000)(10‘7) =220usec

For voo:
Consider TR2, which is risetime of 2" RC circuit by itself:

o, = 2.2RC =(2.2)(1000)(10™") = 220 usec

Tayem &\ Toy + Top & («/5 )(220 psec)~ 311usec
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Example 10: Risetime for Systems in Cascade

1.BU === mmm o m o mm oo Fomemeesemeeeoo .

B.8U~+ - -

0.sU4 - -

0.4U

O.2U4 o - .............................. :

| f |

1 1

1 : 1

1 : 1

1 1

! : 1

BU e r—-———=—>="7>=<= aTT--T-T-=-== ._I' ________ aTT-T-T T T = r—-———=—>="7>=<= aTT-T-T T T = r—-———=—>="7>=<= aTT-T-T T T =
Os 0 ._]_!ns 0.2ms 0.3ms 0.4%ms 0.5ms 0.6ms 0.7ms

= u(uol) {+ju(vo2) Al = 53.684u, 100.215m

Time A2 = 388.421u. 899.805n
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Example 13: Risetime for 3 Systems in Cascade

R4 ~ 4 RE RT

val = Vo2 _EE vad
S S & ) — — & ! il S —

' 1k s 1k e 1k

Vstep i | — E = | JT__hE L |
C4 5 CT
0. 1uF ] 0. 1uF 7 0. 1uF 7
For Voa:

TR.system ™ \/rél +Th, +Thg = (\/5)(220;1 sec) = 381usec
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Example 13: Risetime for 3 Systems in Cascade

GU ______ i r—-———=>"7>"="== i r—-———=>"7>"="== '|___: ______ r—-———=>"7>"="== i r—-———=>"7>"="== i
Os 0.1ms 0.2ms 0.3ms 0.4ms 0.5ms 0.6ms 0.7Tms l

= u(uol) - u(uvo2) {viu(uo3) Al = 110.526u, 100.892m

Time A2 = 532.632u. 900.473m
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Comments on PSPICE

 PSPICE is a useful tool, but beware of some pitfalls
— GIGO problem
— Models
 Sometimes the manufacturers’ models are incorrect
— Tolerances
« Set tolerances sufficiently small. However, this will
Increase simulation time
— Convergence issues
e Transient response is not guaranteed to converge
— Maximum time step
* Choose a time step small enough to capture the
detail that you need. If you make the time step too
small, simulation time can be very large
— Parasitics
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Comments on PSPICE (cont.)

o Continued ...

— Parasitic elements can cause your PSPICE
simulation not to match protoboard results.
Parasitic capacitance and inductance; resistive
shunt paths, etc.

— You should always do a sanity check to verify that
your PSPICE result is reasonable

— PSPICE simulation is not a replacement for good
design and hand calculations.
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