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Summary
• Review of 1st-order systems
• Relationship between bandwidth and risetime• Relationship between bandwidth and risetime
• 2nd order systems
• Resonance, damping and quality factor

E th d• Energy methods
• Transfer functions, pole/zero plots and Bode plots
• Calculating risetime for systems in cascadeg y
• Comments on PSPICE
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Laplace Notation
• Basic idea: Laplace transform converts differential 

equation to algebraic equation

• Laplace method is used in sinusoidal steady state after 
all startup transients have died out

 
Circuit domain Laplace (s) domain 
Resistance, R R 
Inductance L Ls
Capacitance C 1Capac ta ce C

Cs
1

 
Circuit Laplace transformed circuit
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System Function H(s)
• Find “transfer function” H(s) (also called “transfer 

function”) by solving Laplace transformed circuitfunction ) by solving Laplace transformed circuit
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Does this System Function Make Sense 
Intuitively?

+
R1

+

-
vo(s)+vi(s) -

1/(Cs)
R2

At very low frequencies (s 0), the capacitor is an 
open-circuit:

At very high frequencies (s ∞), the capacitor is an 
short circuit:short-circuit:
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Does this System Function Make Sense 
Intuitively?
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First-Order Systemy

• Voltage-driven RC lowpass filter
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Another First-Order SystemAnother First Order System
• Current-driven RC  
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First-Order Systems --- Some Details

• Frequency response:

• Phase response:Phase response: 

• -3 dB bandwidth: 
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10 - 90% Risetime
• Defined as the time it takes a step response to transition 

from 10% of final value to 90% of final value
Thi l t i f fi t d t ith h t• This plot is for a first-order system with no overshoot or 
ringing

10/30/2008 Signal Processing Basics 10



Relationship Between Risetime and Bandwidthp

• Exact for a first-order system:

• Approximate for higher-order systems
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First-Order System Step and Frequency 
Response

Step Response

1
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“Group Delay”
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Group delay is a measure of how much time delay the frequency 
components in a signal undergo.  Mathematically, the group delay of a 

t i th ti d i ti f th h ith t t Tsystem is the negative derivative of the phase with respect to omega.  To 
find group delay for the first-order system, we make use of the identity: 
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First-Order System --- Low and High Frequency 
Behavior

•• ClosedClosed--form solution for frequency response:form solution for frequency response:
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• How does this response behave at frequencies well above 
and well below the pole frequency ?

10/30/2008 Signal Processing Basics 14

y



First-Order System --- High Frequency Behavior

For high frequencies, where ωτ >> 1

tan-1(x) = π/2 – 1/x + 1/(3x3) - … for x > 1  
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First-Order System --- Low Frequency Behavior

For low frequencies, where ωτ << 1

tan-1(x) = x – x3/3 + x5/5 - … for x < 1 and 2
1
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Well below the pole frequency, the magnitude is approximately 1.
The phase is approximately linear phase, behaving like an 
approximate time delay “Group delay” is negative derivative of angle

ωτ <<1)( j

approximate time delay.  Group delay  is negative derivative of angle 
with respect to frequency, or:

τω ωτ ≈<<1)( jG
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Step Response of Single Pole

Step Response
Stepresponseofsinglepoleat -1r/s

• Single pole at -1 rad/sec.
• Note that risetime = 2.2 sec
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Step Response of Single Pole with High 
Frequency Pole Added

• Poles at -1 rad/sec. and -10 rad/sec.
• Note the time delay of approximately 0 1 secNote the time delay of approximately 0.1 sec.

Step Response
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Bode Plot Single Pole with High Frequency Pole 
Added

• Poles at -1 rad/sec. and -10 rad/sec.
Compare to system with real-axis poles at -1 and -10 r/s
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Second-Order Mechanical Systemy

Spring force: 

Newton’s law for moving mass:

Differential equation for mass motion:

Guess a solution of the form:

Differential equation for mass motion:
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Second-Order Mechanical Systemy

Put this proposed solution into the differential equation:

This solution works if:
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Second-Order Electrical Systemy
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Second-Order System Frequency Response
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Second-Order System Frequency Response

Frequency response for natural frequency = 1 and various damping ratios
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Resonant Circuit --- Pole/Zero Plotseso a C cu o e/ e o o s
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Second-Order System Frequency Response at 
Natural Frequency

• Now, what happens if we excite this system exactly at the 
t l f ? Th inatural frequency, or ω = ωn. ?  The response is:
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Quality Factor, or “Q”
Quality factor is defined as: 

diss

stored

P
E

ω  

 
where Estored is the peak stored energy in the system and Pdiss 
is the average power dissipationis the average power dissipation.
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Q of Series Resonant RLC
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Q of Parallel Resonant RLC
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Relationship Between Damping Ratio and 
“Quality Factor” Q

• A second order system can also be characterized by it’s 
“Q lit F t ” Q“Quality Factor” or Q.

QsH ==
1)( QsH

n
==

= ςωω 2
)(

11)(H

• Use Q in transfer function of series resonant circuit:

112
)(

2

2

2

2

++
=

++
=

Q
ssss

sH

nnnn ωωω
ζ

ω

10/30/2008 Signal Processing Basics 30

Qnnnn



Series Resonant Circuit at ResonanceSeries Resonant Circuit at Resonance
The magnitude of this transfer function is: 
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Exactly at resonance (ω = ωn), the magnitude of the transfer 
function is: 
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Second-Order System Step Response
• Shown for varying values of damping ratio.

Step Response
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Second-Order System Step Responsey p p
Step Response
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Logarithmic Decrement

• Method of 
estimating 
damping ratio 
based on 
measurementmeasurement
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Logarithmic Decrement (cont )Logarithmic Decrement (cont.)
• Simplify:

1
1ntex −ςω

• TD = oscillation period
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Logarithmic Decrement (cont )Logarithmic Decrement (cont.)
• The logarithmic decrement δ is the natural log of the ratio 

of any two successive oscillation amplitudes.
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Logarithmic Decrement (cont )Logarithmic Decrement (cont.)
• Comment:  If we 

measure how the 
amplitude decreased 
cycle-by-cycle, we 
can find dampingcan find damping 
ratio

• Example:  In a free 
vibration test thevibration test, the 
ratio of amplitudes is 
2.5 to 1 on 
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oscillations... 145.0
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Logarithmic Decrement (cont )Logarithmic Decrement (cont.)
• If damping ratio is very low, 
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⎞⎛⎞⎛⎞⎛⎞⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
•••⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

++ 14

3

3

2

2

1

1

1

N

N

N x
x

x
x

x
x

x
x

x
x

• Take log of both sides

δNxxxxx N =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+•••⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ 3211 lnlnlnlnln

10/30/2008 Signal Processing Basics 38

xxxxx NN
⎟
⎠

⎜
⎝

⎟
⎠

⎜
⎝

⎟
⎠

⎜
⎝

⎟
⎠

⎜
⎝

⎟
⎠

⎜
⎝ ++ 14321



Logarithmic Decrement (cont )Logarithmic Decrement (cont.)
• Take log of both sides
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A Potpourri of Resonant CircuitsA Potpourri of Resonant Circuits
• Both damped and undamped
• All circuits simulated with PSIM
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Example 1: Undamped Resonant CircuitExample 1:  Undamped Resonant Circuit
• L = 1/(2π); C = 1/(2π).  Initial conditions:  capacitor voltage 

= 0 and inductor current = 1 Amp
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Example 1:  What Do We Know About This 
Ci it?Circuit?

• L = 1/(2π); C = 1/(2π)
• Zo = 1 Ohmo
• ωo = 2π rad/sec; fo = 1 Hz
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Example 1:  Undamped Resonant Circuit 
RResponse

• L = 1/(2π); C = 1/(2π)

• Note ratio of voltage/current = 1 ohm
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Example 1: Series Resonant Step ResponseExample 1:  Series Resonant Step Response

• L = 1/(2π); C = 1/(2π).  Assume zero initial conditions( ); ( )
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Example 1: Series Resonant Step ResponseExample 1:  Series Resonant Step Response
• Zo = 1 Ohm
• Natural frequency: ω = 2π rad/sec; f = 1 HzNatural frequency:  ωo  2π rad/sec; fo  1 Hz
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Example 1: Series Resonant Step ResponseExample 1:  Series Resonant Step Response
• Zo = 1 Ohm
• ωo = 2π rad/sec; fo = 1 Hz
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Example 1: Series Resonant Step ResponseExample 1:  Series Resonant Step Response
• What is inductor current? Remember Zo = 1 Ohm
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Example 1:  Series Resonant Step 
RResponse

• What is inductor current? Remember Zo = 1 Ohm

Peak-peak = 20V

Peak-peak = 20A
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Example 2: Now Add 0.1 Ω ResistorExample 2:  Now Add 0.1 Ω Resistor

10/30/2008 Signal Processing Basics 49



Example 2: Now Add 0.1 Ω ResistorExample 2:  Now Add 0.1 Ω Resistor
• R << Zo, so damping is small
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Example 2: Now Add 0.1 Ω ResistorExample 2:  Now Add 0.1 Ω Resistor
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Example 3: Change the 0.1 Ω to 1 ΩExample 3:  Change the 0.1 Ω to 1 Ω
• R = Zo in this case
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Example 3: Change the 0.1 Ω to 1 ΩExample 3:  Change the 0.1 Ω to 1 Ω
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Example 4: Change the 1 Ω to 10 ΩExample 4:  Change the 1 Ω to 10 Ω
• R >> Zo in this case

10/30/2008 Signal Processing Basics 54



Example 4: Series Resonant Step ResponseExample 4:  Series Resonant Step Response
• What’s the initial inductor current, approximately (and 

why)?why)?
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Example 4: Series Resonant Step ResponseExample 4:  Series Resonant Step Response
• What’s the initial inductor current, approximately?
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Example 4: Response for R >> ZoExample 4:  Response for R  Zo

• At low frequencies, this behaves like an RC lowpass filter
• At high frequencies when capacitor is almost a short thisAt high frequencies, when capacitor is almost a short, this 

behaves as a LPF with L/R time constant
• Why is this?

10/30/2008 Signal Processing Basics 57



Second Order System --- Pole Location Variation 
with Damping

Critically 
Very underdamped

ωj

j

damped
Overdamped

ωj
ωj

σ

x njω+

σx
nω−

2 poles
σxx

x njω−

2 poles
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Overdamped Case
1)( 2=sH

Overdamped
ωj• At low frequencies, for RCs >> LCs2, 

R L th

1
)( 2 ++ RCsLCs

sH

σxx

or R >> Ls, then …

1
1)(
+

≈
RCs

sH
σxx

• At high frequencies, with RCs>>1, 
then

1+RCs

then

⎟
⎞

⎜
⎛ +

≈
+

≈
1

11)( 2

sLRCsRCsLCs
sH

10/30/2008 Signal Processing Basics 59

⎟
⎠

⎜
⎝

+1s
R

RCs



Example 5:  Series Resonant Circuit with 
Di dDiode

• Q:  With a positive voltage step, what does the diode do in 
this circuit?this circuit?
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Example 5:  Series Resonant Circuit with 
Di dDiode

• A:  Nothing…it’s always reverse biased
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Example 6: Now, Flip the DiodeExample 6:  Now, Flip the Diode
• Q:  What does the diode do in this circuit?
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Example 6:  Series Resonant Circuit with 
Di dDiode

• A:  It shorts out the capacitor; the circuit behaves like a 
series LR circuit with L/R time constant 159 secseries LR circuit with L/R time constant 159 sec.
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Example 7:  Second-Order System Step 
Response with Extra PoleResponse, with Extra Pole

• Second order system with ωn = 1 r/s, damping ratio = 0.5
• Extra pole added at -10 r/sp

Step Response
Compare step response of wn=1, damp=0.5 2nd order system with pole added at -10 r/s

e

0.8

1

Effects of extra pole

A
m

pl
itu

de

0.4

0.6
Effects of extra pole

0 2 4 6 8 10 12

0

0.2
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Example 8:  Second-Order System Step 
Response, with Extra Pole

• Second order
Step Response

Compare step response of wn=1, damp=0.5 2nd order system with pole added at -2 r/s

Second order 
system with ωn = 
1 r/s, damping 

ti 0 5 08

1

ratio = 0.5
• Extra pole 
added at -2 r/s A

m
pl

itu
de

0.6

0.8

0.2

0.4

Time (sec.)

0 2 4 6 8 10 12

0
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Widely-Spaced Pole ApproximationWidely-Spaced Pole Approximation

For a transfer function of the form: 
 

BA2

1
 BAss ++2

 
If the poles are on the real axis and are widely spaced, we can 
approximate them by:
 

As fast −≈

ABsslow

fast

/−≈
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Widely-Spaced Pole Approximation
• Assume that we have 3 real-axis polesp

11)(sH ( ) ( ) 1)1)(1)(1(
)(

321
2

323121
3

321321 +++++++
=

+++
=

ssssss
sH

τττττττττττττττ
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Widely-Spaced Pole Approximation
• We can re-write this transfer function:

23

1)( =sH

3213

1
2

2
3

3 1
)(

τττ=
+++

a
sasasa

3231212

τττ
ττττττ

++=
++=

a
a

3211 τττ ++=a
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Widely-Spaced Pole Approximation
• Pole locations can be approximated if the poles are 
widely spaced:widely spaced:

111
−≈−≈−≈plow

213231212

13211

1ττττττττ
ττττ

−≈−≈
++

−≈−≈

++
ap

a
plow

13211

33213213

1ττττ
τττττττ

++

≈≈≈≈

a
a

phigh

221

1

323121

321

2

1

τττττττττ
−≈−≈

++
≈≈

a
pmedium
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Widely-Spaced Pole Approximation
• In the general case with k poles, if they are widely 
spaced and on the real axis:spaced and on the real axis:

1ka 1−≈ −

k

k
k a

p

1=oa
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Widely-Spaced Pole Approximation ---
Sanity Check

• Examine system with poles at -1, -10, -100, -1000 
and 10000 r/sand -10000 r/s

1111.110122.110122.110111.110
1)( 213346510 ++×+×+×+

= −−−− sssss
sH

srp

10122.1

/110,11
10

10111.1

3

10

6

5

×

−≈
×

−≈

−

−

−

srp

srp

/100
10122.1
10122.1

/010,1
10111.1
10122.1

3

1

3

64

−≈
×
×

−≈

−≈
×
×

−≈

−

−

−

• The 
approximation does

srp

srp

/901

/9.9
10122.1

111.1
12

−≈−≈

−≈
×

−≈ −

approximation does 
a decent job
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Undamped Resonant Circuitp

L
v

dt
di cL = C

i
dt
dv Lc −

=

2

LC
v

dt
di

Cdt
vd cLc −=−=

1
2

2

Guess that the voltage v(t) is sinusoidal with v(t) = Vosinωt.  Putting this 
into the equation for capacitor voltage results in: 

)i (1)i (2 tt )sin()sin(2 t
LC

t ωωω −=−

 
This means that the resonant frequency is the standard (as expected) q y ( p )
resonance: 

LCr
12 =ω  
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Energy Methodsgy

Storage Mode Relationship Comments 
Capacitor/electric field 21 CVE

p
storage 

2

2
CVEelec =

Inductor/magnetic field 
storage dVBLIE

o
mag ∫==

μ22
1 2

2  
 

Kinetic energy 2

2
1 MvEk =  

 

Rotary energy 2

2
1 ωIEr =

I ≡ mass moment of inertia 
(kg m2)2r (kg- m )

Spring 2

2
1 kxEspring =  k ≡ spring constant (N/m) 

Potential energy hMgE Δ=Δ Δh ≡ height changeote t a e e gy hMgEp ΔΔ Δh height change
Thermal energy TCE THT Δ=Δ  CTH ≡ thermal capacitance 

(J/K)   
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Energy Methodsgy

By using energy methods we can find the ratio of maximum capacitor voltage 
to maximum inductor current.  Assuming that the capacitor is initially charged 
t V lt d b i th t it t d E ½CV2 dto Vo volts, and remembering that capacitor stored energy Ec = ½CV2 and 
inductor stored energy is EL = ½LI2, we can write the following: 
 

22 11 22

2
1

2
1

oo LICV =  
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Energy Methods

What does this mean about the magnitude of the inductor current ?  Well, we can 
solve for the ratio of Vo/Io resulting in:
 

o ZLV
≡= o

o

Z
CI

≡

 
The term “Zo” is defined as the characteristic impedance of a resonant circuit.  Let’s 

th t h i d t it i it ith C 1 i F d d L 1assume that we have an inductor-capacitor circuit with C = 1 microFarad and L = 1 
microHenry.  This means that the resonant frequency is 106 radians/second (or 
166.7 kHz) and that the characteristic impedance is 1 Ohm.  
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Example 9:  Simulation

• Initial conditions at t = 0:  capacitor 
voltage = 1; inductor current = 0.
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Transfer Functions, Pole-Zero and Bode 
Plots
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Transfer Functions, Pole-Zero and Bode 
Plots
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Transfer Functions, Pole-Zero and Bode 
Plots
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Risetime for Systems in Cascade

For multiple systems in cascade, the risetimes do not simply add; for instance, for 
N systems wired in series, each with its own risetime τR1, τR2, … τRN, the overall y , R1, R2, RN,
risetime of the cascade τR is: 
 

22
3

2
2

2
1 RNRRRR τττττ ⋅⋅⋅+++≈  

 
Note that this equation works if each system is buffered/isolated from the next 
sytem; i.e. the systems don’t load each other down. 
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Example 10:  Risetime for Systems in Cascade

For vo1: 
sec220)10)(1000)(2.2(2.2 7

1 μτ === −RCR  
 
For vo2:   
Consider TR2, which is risetime of 2nd RC circuit by itself: 
 

7

( )( ) sec311sec2202

sec220)10)(1000)(2.2(2.2
2

2
2

1,

7
2

μμτττ

μτ

≈≈+≈

=== −

RRsystemR

R RC
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Example 10:  Risetime for Systems in Cascade
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Example 13: Risetime for 3 Systems in CascadeExample 13:  Risetime for 3 Systems in Cascade

FFor vo3:   
( )( ) sec381sec22032

3
2

2
2

1, μμττττ ==++≈ RRRsystemR  
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Example 13: Risetime for 3 Systems in CascadeExample 13:  Risetime for 3 Systems in Cascade
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Comments on PSPICE
• PSPICE is a useful tool but beware of some pitfallsPSPICE is a useful tool, but beware of some pitfalls

– GIGO problem
– Models

S ti th f t ’ d l i t• Sometimes the manufacturers’ models are incorrect 
– Tolerances

• Set tolerances sufficiently small.  However, this will 
increase simulation time

– Convergence issues
• Transient response is not guaranteed to convergeTransient response is not guaranteed to converge

– Maximum time step
• Choose a time step small enough to capture the 

detail that you need If you make the time step toodetail that you need.  If you make the time step too 
small, simulation time can be very large

– Parasitics
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Comments on PSPICE (cont.)
• Continued ...

– Parasitic elements can cause your PSPICE– Parasitic elements can cause your PSPICE 
simulation not to match protoboard results.  
Parasitic capacitance and inductance; resistive 
h t th tshunt paths, etc.

– You should always do a sanity check to verify that 
your PSPICE result is reasonabley

– PSPICE simulation is not a replacement for good 
design and hand calculations.
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